コード例 #1
0
def download_model(model_name):
    if not os.path.exists(f"{model_name}model"):
        url = BASE_URL.format(model_name=model_name)
        logger.info(f"Downloading {url}...")
        download_check_etag(url, f"{model_name}model.zst")
        zstd_decompress(f"{model_name}model")
        assert os.path.exists(f"{model_name}model"), "Decompressed file exists"
コード例 #2
0
def retrieve_model(name):
    os.makedirs(MODELS_DIR, exist_ok=True)

    file_name = f"{name}model"
    file_path = os.path.join(MODELS_DIR, file_name)

    base_model_url = BASE_URL.format(name, f"v{get_bugbug_version()}")
    model_url = f"{base_model_url}/{file_name}.zst"
    LOGGER.info(f"Checking ETAG of {model_url}")

    r = requests.head(model_url, allow_redirects=True)
    r.raise_for_status()
    new_etag = r.headers["ETag"]

    try:
        with open(f"{file_path}.etag", "r") as f:
            old_etag = f.read()
    except IOError:
        old_etag = None

    if old_etag != new_etag:
        LOGGER.info(f"Downloading the model from {model_url}")
        urlretrieve(model_url, f"{file_path}.zst")

        zstd_decompress(file_path)
        LOGGER.info(f"Written model in {file_path}")

        with open(f"{file_path}.etag", "w") as f:
            f.write(new_etag)
    else:
        LOGGER.info(f"ETAG for {model_url} is ok")

    return file_path
コード例 #3
0
def download_model(model_url, file_path):
    logger.info(
        f"Downloading model from {model_url!r} and save it in {file_path!r}")
    urlretrieve(model_url, f"{file_path}.zst")

    zstd_decompress(file_path)
    logger.info(f"Written model in {file_path}")
コード例 #4
0
def classify_bugs(model_name, classifier, bug_id):
    if classifier != "default":
        assert (
            model_name in MODELS_WITH_TYPE
        ), f"{classifier} is not a valid classifier type for {model_name}"

        model_file_name = f"{model_name}{classifier}model"
        model_name = f"{model_name}_{classifier}"
    else:
        model_file_name = f"{model_name}model"

    if not os.path.exists(model_file_name):
        logger.info(f"{model_file_name} does not exist. Downloading the model....")
        try:
            download_check_etag(
                f"https://index.taskcluster.net/v1/task/project.relman.bugbug.train_{model_name}.latest/artifacts/public/{model_file_name}.zst",
                f"{model_file_name}.zst",
            )
        except requests.HTTPError:
            logger.error(
                f"A pre-trained model is not available, you will need to train it yourself using the trainer script"
            )
            raise SystemExit(1)

        zstd_decompress(model_file_name)
        assert os.path.exists(model_file_name), "Decompressed file doesn't exist"

    model_class = get_model_class(model_name)
    model = model_class.load(model_file_name)

    if bug_id:
        bugs = bugzilla.get(bug_id).values()
        assert bugs, f"A bug with a bug id of {bug_id} was not found"
    else:
        bugs = bugzilla.get_bugs()

    for bug in bugs:
        print(
            f'https://bugzilla.mozilla.org/show_bug.cgi?id={bug["id"]} - {bug["summary"]} '
        )

        if model.calculate_importance:
            probas, importance = model.classify(
                bug, probabilities=True, importances=True
            )

            model.print_feature_importances(
                importance["importances"], class_probabilities=probas
            )

            with open("importance.html", "w") as f:
                f.write(importance["html"])
        else:
            probas = model.classify(bug, probabilities=True, importances=False)

        if np.argmax(probas) == 1:
            print(f"Positive! {probas}")
        else:
            print(f"Negative! {probas}")
        input()
コード例 #5
0
ファイル: db.py プロジェクト: arjun-krishna/bugbug
def extract_file(path):
    path, compression_type = os.path.splitext(path)

    if compression_type == ".zst":
        zstd_decompress(path)
    else:
        assert False, f"Unexpected compression type: {compression_type}"
コード例 #6
0
def main(args):

    model_file_name = f"{similarity.model_name_to_class[args.algorithm].__name__.lower()}.similaritymodel"

    if not os.path.exists(model_file_name):
        logger.info(
            f"{model_file_name} does not exist. Downloading the model....")
        try:
            download_check_etag(URL.format(model_file_name))
        except requests.HTTPError:
            logger.error(
                f"A pre-trained model is not available, you will need to train it yourself using the trainer script"
            )
            raise SystemExit(1)

        zstd_decompress(model_file_name)
        assert os.path.exists(
            model_file_name), "Decompressed file doesn't exist"

    model = similarity.model_name_to_class[args.algorithm].load(
        f"{similarity.model_name_to_class[args.algorithm].__name__.lower()}.similaritymodel"
    )

    bug_ids = model.get_similar_bugs(bugzilla.get(args.bug_id)[args.bug_id])

    bugs = {}
    for bug in bugzilla.get_bugs():
        if bug["id"] in bug_ids or bug["id"] == args.bug_id:
            bugs[bug["id"]] = bug

    print("{}: {}".format(args.bug_id, bugs[args.bug_id]["summary"]))
    for bug_id in bug_ids:
        print("{}: {}".format(bug_id, bugs[bug_id]["summary"]))
コード例 #7
0
def download_model(model_url, file_path):
    logger.info(
        f"Downloading model from {model_url!r} and save it in {file_path!r}")
    download_check_etag(model_url)

    zstd_decompress(file_path)
    logger.info(f"Written model in {file_path}")
コード例 #8
0
def _download_past_bugs(url: str) -> dict:
    path = os.path.join("data", os.path.basename(url)[:-4])
    download_check_etag(url, path=f"{path}.zst")
    zstd_decompress(path)
    assert os.path.exists(path)
    with open(path, "r") as f:
        return json.load(f)
コード例 #9
0
ファイル: commit_classifier.py プロジェクト: Luis-gd/bugbug
    def __init__(self, model_name, cache_root, git_repo_dir,
                 method_defect_predictor_dir):
        self.model_name = model_name
        self.cache_root = cache_root

        assert os.path.isdir(
            cache_root), f"Cache root {cache_root} is not a dir."
        self.repo_dir = os.path.join(cache_root, "mozilla-central")

        self.model = self.load_model(model_name)
        assert self.model is not None

        self.git_repo_dir = git_repo_dir
        if git_repo_dir:
            self.clone_git_repo("https://github.com/mozilla/gecko-dev",
                                git_repo_dir)

        self.method_defect_predictor_dir = method_defect_predictor_dir
        if method_defect_predictor_dir:
            self.clone_git_repo(
                "https://github.com/lucapascarella/MethodDefectPredictor",
                method_defect_predictor_dir,
                "fa5269b959d8ddf7e97d1e92523bb64c17f9bbcd",
            )

        if model_name == "regressor":
            self.use_test_history = False

            model_data_X_path = f"{model_name}model_data_X"
            if not os.path.exists(model_data_X_path):
                download_check_etag(
                    URL.format(model_name=model_name,
                               file_name=f"{model_data_X_path}.zst"))
                zstd_decompress(model_data_X_path)
                assert os.path.exists(
                    model_data_X_path), "Decompressed X dataset exists"

            model_data_y_path = f"{model_name}model_data_y"
            if not os.path.exists(model_data_y_path):
                download_check_etag(
                    URL.format(model_name=model_name,
                               file_name=f"{model_data_y_path}.zst"))
                zstd_decompress(model_data_y_path)
                assert os.path.exists(
                    model_data_y_path), "Decompressed y dataset exists"

            self.X = to_array(joblib.load(model_data_X_path))
            self.y = to_array(joblib.load(model_data_y_path))

        if model_name == "testselect":
            self.use_test_history = True
            assert db.download_support_file(test_scheduling.TEST_SCHEDULING_DB,
                                            test_scheduling.PAST_FAILURES_DB)
            self.past_failures_data = test_scheduling.get_past_failures()

            self.backout_model = self.load_model("backout")
            assert self.backout_model is not None
コード例 #10
0
ファイル: db.py プロジェクト: mvkski/bugbug
def extract_file(path):
    inner_path, _ = os.path.splitext(path)

    if str(path).endswith(".tar.zst"):
        extract_tar_zst(inner_path)
    elif str(path).endswith(".zst"):
        zstd_decompress(inner_path)
    else:
        assert False, f"Unexpected compression type for {path}"
コード例 #11
0
ファイル: commit_classifier.py プロジェクト: Luis-gd/bugbug
    def load_model(self, model_name):
        model_path = f"{model_name}model"
        if not os.path.exists(model_path):
            download_check_etag(
                URL.format(model_name=model_name,
                           file_name=f"{model_path}.zst"))
            zstd_decompress(model_path)
            assert os.path.exists(model_path), "Decompressed model exists"

        return get_model_class(model_name).load(model_path)
コード例 #12
0
def download_similarity_model(model_name):
    path = f"{model_name_to_class[model_name].__name__.lower()}.similaritymodel"
    url = f"https://community-tc.services.mozilla.com/api/index/v1/task/project.relman.bugbug.train_similarity.latest/artifacts/public/{path}.zst"

    logger.info(f"Downloading similarity model from {url}...")
    updated = download_check_etag(url)
    if updated:
        zstd_decompress(path)
        os.remove(f"{path}.zst")
    assert os.path.exists(path), "Decompressed file exists"
    return path
コード例 #13
0
    def __init__(self, cache_root):
        self.cache_root = cache_root

        assert os.path.isdir(cache_root), f"Cache root {cache_root} is not a dir."
        self.repo_dir = os.path.join(cache_root, "mozilla-central")

        if not os.path.exists("regressormodel"):
            download_check_etag(URL, "regressormodel.zst")
            zstd_decompress("regressormodel")
            assert os.path.exists("regressormodel"), "Decompressed file exists"

        self.model = RegressorModel.load("regressormodel")
コード例 #14
0
def test_zstd_compress_decompress(tmp_path):
    path = tmp_path / "prova"
    compressed_path = path.with_suffix(".zst")

    with open(path, "w") as f:
        json.dump({"Hello": "World"}, f)

    utils.zstd_compress(path)

    assert os.path.exists(compressed_path)
    os.remove(path)

    utils.zstd_decompress(path)

    with open(path, "r") as f:
        file_decomp = json.load(f)

    assert file_decomp == {"Hello": "World"}
コード例 #15
0
def download_coverage_mapping() -> None:
    commit_to_coverage = get_coverage_mapping(False)

    utils.download_check_etag(
        "https://firefox-ci-tc.services.mozilla.com/api/index/v1/task/project.relman.code-coverage.production.cron.latest/artifacts/public/commit_coverage.json.zst",
        "data/coverage_mapping.json.zst",
    )

    zstd_decompress("data/coverage_mapping.json")
    assert os.path.exists("data/coverage_mapping.json")

    with open("data/coverage_mapping.json", "r") as f:
        data = json.load(f)

    for commit_hash, commit_stats in data.items():
        commit_to_coverage[commit_hash.encode("utf-8")] = pickle.dumps(
            commit_stats)

    close_coverage_mapping()
コード例 #16
0
    def __init__(self, cache_root):
        self.cache_root = cache_root

        assert os.path.isdir(
            cache_root), f"Cache root {cache_root} is not a dir."
        self.repo_dir = os.path.join(cache_root, "mozilla-central")

        if not os.path.exists("regressormodel"):
            download_check_etag(URL, "regressormodel.zst")
            zstd_decompress("regressormodel")
            assert os.path.exists(
                "regressormodel"), "Decompressed model exists"

        if not os.path.exists("regressormodel_data_X"):
            download_check_etag(URL, "regressormodel_data_X.zst")
            zstd_decompress("regressormodel_data_X")
            assert os.path.exists(
                "regressormodel_data_X"), "Decompressed X dataset exists"

        if not os.path.exists("regressormodel_data_y"):
            download_check_etag(URL, "regressormodel_data_y.zst")
            zstd_decompress("regressormodel_data_y")
            assert os.path.exists(
                "regressormodel_data_y"), "Decompressed y dataset exists"

        self.model = RegressorModel.load("regressormodel")
        # We use "clean" commits as the background dataset for feature importance.
        # This way, we can see the features which are most important in differentiating
        # the current commit from the "clean" commits.
        X = joblib.load("regressormodel_data_X")
        y = joblib.load("regressormodel_data_y")
        self.background_dataset = X[y == 0]
コード例 #17
0
ファイル: commit_classifier.py プロジェクト: e7dal/bugbug
    def __init__(self, model_name, repo_dir, git_repo_dir, method_defect_predictor_dir):
        self.model_name = model_name
        self.repo_dir = repo_dir

        self.model = download_and_load_model(model_name)
        assert self.model is not None

        self.git_repo_dir = git_repo_dir
        if git_repo_dir:
            self.clone_git_repo("https://github.com/mozilla/gecko-dev", git_repo_dir)

        self.method_defect_predictor_dir = method_defect_predictor_dir
        if method_defect_predictor_dir:
            self.clone_git_repo(
                "https://github.com/lucapascarella/MethodDefectPredictor",
                method_defect_predictor_dir,
                "8cc47f47ffb686a29324435a0151b5fabd37f865",
            )

        if model_name == "regressor":
            self.use_test_history = False

            model_data_X_path = f"{model_name}model_data_X"
            updated = download_check_etag(
                URL.format(model_name=model_name, file_name=f"{model_data_X_path}.zst")
            )
            if updated:
                zstd_decompress(model_data_X_path)
            assert os.path.exists(model_data_X_path), "Decompressed X dataset exists"

            model_data_y_path = f"{model_name}model_data_y"
            updated = download_check_etag(
                URL.format(model_name=model_name, file_name=f"{model_data_y_path}.zst")
            )
            if updated:
                zstd_decompress(model_data_y_path)
            assert os.path.exists(model_data_y_path), "Decompressed y dataset exists"

            self.X = to_array(joblib.load(model_data_X_path))
            self.y = to_array(joblib.load(model_data_y_path))

            past_bugs_by_function_path = "data/past_bugs_by_function.pickle"
            download_check_etag(
                PAST_BUGS_BY_FUNCTION_URL, path=f"{past_bugs_by_function_path}.zst"
            )
            zstd_decompress(past_bugs_by_function_path)
            assert os.path.exists(past_bugs_by_function_path)
            with open(past_bugs_by_function_path, "rb") as f:
                self.past_bugs_by_function = pickle.load(f)

        if model_name == "testlabelselect":
            self.use_test_history = True
            assert db.download_support_file(
                test_scheduling.TEST_LABEL_SCHEDULING_DB,
                test_scheduling.PAST_FAILURES_LABEL_DB,
            )
            self.past_failures_data = test_scheduling.get_past_failures("label")

            self.testfailure_model = download_and_load_model("testfailure")
            assert self.testfailure_model is not None
コード例 #18
0
    def __init__(self, cache_root, git_repo_dir, method_defect_predictor_dir):
        self.cache_root = cache_root

        assert os.path.isdir(
            cache_root), f"Cache root {cache_root} is not a dir."
        self.repo_dir = os.path.join(cache_root, "mozilla-central")

        regressormodel_path = "regressormodel"
        if not os.path.exists(regressormodel_path):
            download_check_etag(URL.format(f"{regressormodel_path}.zst"),
                                f"{regressormodel_path}.zst")
            zstd_decompress(regressormodel_path)
            assert os.path.exists(
                regressormodel_path), "Decompressed model exists"

        regressormodel_data_X_path = "regressormodel_data_X"
        if not os.path.exists(regressormodel_data_X_path):
            download_check_etag(
                URL.format(f"{regressormodel_data_X_path}.zst"),
                f"{regressormodel_data_X_path}.zst",
            )
            zstd_decompress(regressormodel_data_X_path)
            assert os.path.exists(
                regressormodel_data_X_path), "Decompressed X dataset exists"

        regressormodel_data_y_path = "regressormodel_data_y"
        if not os.path.exists(regressormodel_data_y_path):
            download_check_etag(
                URL.format(f"{regressormodel_data_y_path}.zst"),
                f"{regressormodel_data_y_path}.zst",
            )
            zstd_decompress(regressormodel_data_y_path)
            assert os.path.exists(
                regressormodel_data_y_path), "Decompressed y dataset exists"

        self.model = RegressorModel.load(regressormodel_path)
        self.X = to_array(joblib.load(regressormodel_data_X_path))
        self.y = to_array(joblib.load(regressormodel_data_y_path))

        self.method_defect_predictor_dir = method_defect_predictor_dir
        self.clone_git_repo(
            "https://github.com/lucapascarella/MethodDefectPredictor",
            method_defect_predictor_dir,
            "fa5269b959d8ddf7e97d1e92523bb64c17f9bbcd",
        )
        self.git_repo_dir = git_repo_dir
        self.clone_git_repo("https://github.com/mozilla/gecko-dev",
                            git_repo_dir)
コード例 #19
0
    def __init__(
        self,
        model_name: str,
        repo_dir: str,
        git_repo_dir: str,
        method_defect_predictor_dir: str,
        use_single_process: bool,
        skip_feature_importance: bool,
    ):
        self.model_name = model_name
        self.repo_dir = repo_dir

        self.model = Model.load(download_model(model_name))
        assert self.model is not None

        self.git_repo_dir = git_repo_dir
        if git_repo_dir:
            self.clone_git_repo(
                "hg::https://hg.mozilla.org/mozilla-central", git_repo_dir
            )

        self.method_defect_predictor_dir = method_defect_predictor_dir
        if method_defect_predictor_dir:
            self.clone_git_repo(
                "https://github.com/lucapascarella/MethodDefectPredictor",
                method_defect_predictor_dir,
                "8cc47f47ffb686a29324435a0151b5fabd37f865",
            )

        self.use_single_process = use_single_process
        self.skip_feature_importance = skip_feature_importance

        if model_name == "regressor":
            self.use_test_history = False

            model_data_X_path = f"{model_name}model_data_X"
            updated = download_check_etag(
                URL.format(model_name=model_name, file_name=f"{model_data_X_path}.zst")
            )
            if updated:
                zstd_decompress(model_data_X_path)
            assert os.path.exists(model_data_X_path), "Decompressed X dataset exists"

            model_data_y_path = f"{model_name}model_data_y"
            updated = download_check_etag(
                URL.format(model_name=model_name, file_name=f"{model_data_y_path}.zst")
            )
            if updated:
                zstd_decompress(model_data_y_path)
            assert os.path.exists(model_data_y_path), "Decompressed y dataset exists"

            with open(model_data_X_path, "rb") as fb:
                self.X = to_array(pickle.load(fb))

            with open(model_data_y_path, "rb") as fb:
                self.y = to_array(pickle.load(fb))

            past_bugs_by_function_path = "data/past_fixed_bugs_by_function.json"
            download_check_etag(
                PAST_BUGS_BY_FUNCTION_URL, path=f"{past_bugs_by_function_path}.zst"
            )
            zstd_decompress(past_bugs_by_function_path)
            assert os.path.exists(past_bugs_by_function_path)
            with open(past_bugs_by_function_path, "r") as f:
                self.past_bugs_by_function = json.load(f)

        if model_name == "testlabelselect":
            self.use_test_history = True
            assert db.download_support_file(
                test_scheduling.TEST_LABEL_SCHEDULING_DB,
                test_scheduling.PAST_FAILURES_LABEL_DB,
            )
            self.past_failures_data = test_scheduling.get_past_failures("label", True)

            self.testfailure_model = cast(
                TestFailureModel, TestFailureModel.load(download_model("testfailure"))
            )
            assert self.testfailure_model is not None
コード例 #20
0
    def __init__(
        self, model_name, cache_root, git_repo_dir, method_defect_predictor_dir
    ):
        self.model_name = model_name
        self.cache_root = cache_root

        assert os.path.isdir(cache_root), f"Cache root {cache_root} is not a dir."
        self.repo_dir = os.path.join(cache_root, "mozilla-central")

        self.model = download_and_load_model(model_name)
        assert self.model is not None

        self.git_repo_dir = git_repo_dir
        if git_repo_dir:
            self.clone_git_repo("https://github.com/mozilla/gecko-dev", git_repo_dir)

        self.method_defect_predictor_dir = method_defect_predictor_dir
        if method_defect_predictor_dir:
            self.clone_git_repo(
                "https://github.com/lucapascarella/MethodDefectPredictor",
                method_defect_predictor_dir,
                "fa5269b959d8ddf7e97d1e92523bb64c17f9bbcd",
            )

        if model_name == "regressor":
            self.use_test_history = False

            model_data_X_path = f"{model_name}model_data_X"
            updated = download_check_etag(
                URL.format(model_name=model_name, file_name=f"{model_data_X_path}.zst")
            )
            if updated:
                zstd_decompress(model_data_X_path)
            assert os.path.exists(model_data_X_path), "Decompressed X dataset exists"

            model_data_y_path = f"{model_name}model_data_y"
            updated = download_check_etag(
                URL.format(model_name=model_name, file_name=f"{model_data_y_path}.zst")
            )
            if updated:
                zstd_decompress(model_data_y_path)
            assert os.path.exists(model_data_y_path), "Decompressed y dataset exists"

            self.X = to_array(joblib.load(model_data_X_path))
            self.y = to_array(joblib.load(model_data_y_path))

            past_bugs_by_function_path = "data/past_bugs_by_function.pickle"
            download_check_etag(
                PAST_BUGS_BY_FUNCTION_URL, path=f"{past_bugs_by_function_path}.zst"
            )
            zstd_decompress(past_bugs_by_function_path)
            assert os.path.exists(past_bugs_by_function_path)
            with open(past_bugs_by_function_path, "rb") as f:
                self.past_bugs_by_function = pickle.load(f)

        if model_name == "testselect":
            self.use_test_history = True
            assert db.download_support_file(
                test_scheduling.TEST_SCHEDULING_DB, test_scheduling.PAST_FAILURES_DB
            )
            self.past_failures_data = test_scheduling.get_past_failures()

            self.testfailure_model = download_and_load_model("testfailure")
            assert self.testfailure_model is not None
コード例 #21
0
    def generate_test_scheduling_history(self, granularity):
        push_data_path = f"push_data_{granularity}.json"
        updated = download_check_etag(
            test_scheduling.PUSH_DATA_URL.format(granularity=granularity)
        )
        if updated:
            zstd_decompress(push_data_path)
            os.remove(f"{push_data_path}.zst")
        assert os.path.exists(push_data_path), "Decompressed push data file exists"

        # Get the commits DB.
        assert db.download(repository.COMMITS_DB)

        HISTORY_DATE_START = datetime.now() - relativedelta(
            months=TRAINING_MONTHS[granularity]
        )

        if granularity == "label":
            test_scheduling_db = test_scheduling.TEST_LABEL_SCHEDULING_DB
            past_failures_db = os.path.join(
                "data", test_scheduling.PAST_FAILURES_LABEL_DB
            )
            failing_together_db = os.path.join(
                "data", test_scheduling.FAILING_TOGETHER_LABEL_DB
            )
        elif granularity == "group":
            test_scheduling_db = test_scheduling.TEST_GROUP_SCHEDULING_DB
            past_failures_db = os.path.join(
                "data", test_scheduling.PAST_FAILURES_GROUP_DB
            )
            touched_together_db = os.path.join(
                "data", test_scheduling.TOUCHED_TOGETHER_DB
            )

        db.download(test_scheduling_db, support_files_too=True)

        last_node = None
        for revs, _ in test_scheduling.get_test_scheduling_history(granularity):
            last_node = revs[0]

        def generate_failing_together_probabilities(push_data):
            # TODO: we should consider the probabilities of `task1 failure -> task2 failure` and
            # `task2 failure -> task1 failure` separately, as they could be different.

            count_runs = collections.Counter()
            count_single_failures = collections.Counter()
            count_both_failures = collections.Counter()

            for revisions, tasks, likely_regressions, candidate_regressions in tqdm(
                push_data
            ):
                failures = set(likely_regressions + candidate_regressions)
                all_tasks = list(set(tasks) | failures)

                for task1, task2 in itertools.combinations(sorted(all_tasks), 2):
                    count_runs[(task1, task2)] += 1

                    if task1 in failures:
                        if task2 in failures:
                            count_both_failures[(task1, task2)] += 1
                        else:
                            count_single_failures[(task1, task2)] += 1
                    elif task2 in failures:
                        count_single_failures[(task1, task2)] += 1

            stats = {}

            skipped = 0

            for couple, run_count in count_runs.most_common():
                failure_count = count_both_failures[couple]
                support = failure_count / run_count

                if support < 1 / 700:
                    skipped += 1
                    continue

                if failure_count != 0:
                    confidence = failure_count / (
                        count_single_failures[couple] + failure_count
                    )
                else:
                    confidence = 0.0

                stats[couple] = (support, confidence)

            logger.info(f"{skipped} couples skipped because their support was too low")

            logger.info("Redundancies with the highest support and confidence:")
            for couple, (support, confidence) in sorted(
                stats.items(), key=lambda k: (-k[1][1], -k[1][0])
            )[:7]:
                failure_count = count_both_failures[couple]
                run_count = count_runs[couple]
                logger.info(
                    f"{couple[0]} - {couple[1]} redundancy confidence {confidence}, support {support} ({failure_count} over {run_count})."
                )

            logger.info("Redundancies with the highest confidence and lowest support:")
            for couple, (support, confidence) in sorted(
                stats.items(), key=lambda k: (-k[1][1], k[1][0])
            )[:7]:
                failure_count = count_both_failures[couple]
                run_count = count_runs[couple]
                logger.info(
                    f"{couple[0]} - {couple[1]} redundancy confidence {confidence}, support {support} ({failure_count} over {run_count})."
                )

            failing_together = test_scheduling.get_failing_together_db()
            count_redundancies = collections.Counter()
            for couple, (support, confidence) in stats.items():
                if confidence == 1.0:
                    count_redundancies["==100%"] += 1
                if confidence > 0.9:
                    count_redundancies[">=90%"] += 1
                if confidence > 0.8:
                    count_redundancies[">=80%"] += 1
                if confidence > 0.7:
                    count_redundancies[">=70%"] += 1

                if confidence < 0.7:
                    continue

                failing_together[
                    f"{couple[0]}${couple[1]}".encode("utf-8")
                ] = struct.pack("ff", support, confidence)

            for percentage, count in count_redundancies.most_common():
                logger.info(f"{count} with {percentage} confidence")

            test_scheduling.close_failing_together_db()

        def generate_all_data():
            past_failures = test_scheduling.get_past_failures(granularity)

            push_num = past_failures["push_num"] if "push_num" in past_failures else 0

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            commit_map = {}
            for commit_data in tqdm(repository.get_commits()):
                if not can_start:
                    if last_node == commit_data["node"]:
                        can_start = True

                    continue

                commit_map[commit_data["node"]] = commit_data

            with open(push_data_path, "r") as f:
                push_data = json.load(f)

            logger.info(f"push data nodes: {len(push_data)}")

            if granularity == "label":
                push_data = [
                    (
                        revisions,
                        rename_tasks(push_tasks),
                        rename_tasks(possible_regressions),
                        rename_tasks(likely_regressions),
                    )
                    for revisions, push_tasks, possible_regressions, likely_regressions in push_data
                ]

            # In the last 28 pushes, we definitely run all possible runnables.
            all_runnables_set = set(
                sum((push_runnables for _, push_runnables, _, _ in push_data[-28:]), [])
            )
            # Filter runnables we don't need.
            all_runnables = filter_runnables(
                list(all_runnables_set), all_runnables_set, granularity
            )
            all_runnables_set = set(all_runnables_set)
            logger.info(f"{len(all_runnables_set)} runnables run in the last 28 pushes")

            push_data = [
                (
                    revisions,
                    filter_runnables(push_tasks, all_runnables_set, granularity),
                    filter_runnables(
                        possible_regressions, all_runnables_set, granularity
                    ),
                    filter_runnables(
                        likely_regressions, all_runnables_set, granularity
                    ),
                )
                for revisions, push_tasks, possible_regressions, likely_regressions in push_data
            ]

            if granularity == "label":
                generate_failing_together_probabilities(push_data)

            # Store all runnables in the past_failures DB so it can be used in the evaluation phase.
            past_failures["all_runnables"] = all_runnables
            # XXX: Should we recreate the DB from scratch if the previous all_runnables are not the
            # same as the current ones?

            saved_nodes = set()
            skipped_no_commits = 0
            skipped_too_big_commits = 0
            skipped_no_runnables = 0

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            if granularity == "group":
                update_touched_together_gen = test_scheduling.update_touched_together()
                next(update_touched_together_gen)

            for i in tqdm(range(len(push_data))):
                (
                    revisions,
                    push_runnables,
                    possible_regressions,
                    likely_regressions,
                ) = push_data.pop(0)

                if not can_start:
                    if last_node == revisions[0]:
                        can_start = True

                    continue

                push_num += 1

                # XXX: Some commits are skipped in the repository mining, e.g. merges and backouts. Maybe we should not skip them.
                commits = tuple(
                    commit_map.pop(revision)
                    for revision in revisions
                    if revision in commit_map
                )
                if len(commits) == 0:
                    skipped_no_commits += 1
                    continue

                merged_commits = commit_features.merge_commits(commits)

                # XXX: For now, skip commits which are too large.
                # In the future we can either:
                #  - Improve shelve perf and go back to consider all files;
                #  - Consider only files which appear with a given frequency, like the "files" feature in commit_features;
                #  - Keep a limit of number of files.
                if len(merged_commits["files"]) > 50:
                    skipped_too_big_commits += 1
                    continue

                # If we considered all_runnables, we'd generate a huge amount of data.
                # We consider only the runnables which run in this push, and the possible and likely regressions
                # from this push. We can't consider all runnables because we can't be sure that a task that didn't
                # run on a push would have been successful.
                runnables_to_consider = list(
                    set(push_runnables + possible_regressions + likely_regressions)
                )

                if len(runnables_to_consider) == 0:
                    skipped_no_runnables += 1
                    continue

                # Sync DB every 250 pushes, so we cleanup the shelve cache (we'd run OOM otherwise!).
                if i % 250 == 0:
                    past_failures.sync()

                pushdate = dateutil.parser.parse(merged_commits["pushdate"])

                if granularity == "group":
                    update_touched_together_gen.send(commits[0]["node"])

                result = {
                    "revs": revisions,
                    "data": [],
                }
                for data in test_scheduling.generate_data(
                    past_failures,
                    merged_commits,
                    push_num,
                    runnables_to_consider,
                    possible_regressions,
                    likely_regressions,
                ):
                    if pushdate > HISTORY_DATE_START:
                        result["data"].append(data)

                if pushdate > HISTORY_DATE_START:
                    saved_nodes.add(i)
                    yield result

            if granularity == "group":
                try:
                    update_touched_together_gen.send(None)
                except StopIteration:
                    pass

            logger.info(f"saved push data nodes: {len(saved_nodes)}")
            logger.info(f"skipped {skipped_no_commits} (no commits in our DB)")
            logger.info(f"skipped {skipped_too_big_commits} (too big commits)")
            logger.info(f"skipped {skipped_no_runnables} (no interesting runnables)")

            past_failures["push_num"] = push_num
            past_failures.close()

        db.append(test_scheduling_db, generate_all_data())

        zstd_compress(test_scheduling_db)

        with open_tar_zst(past_failures_db) as tar:
            tar.add(past_failures_db[: -len(".tar.zst")])

        if granularity == "group":
            with open_tar_zst(touched_together_db) as tar:
                tar.add(touched_together_db[: -len(".tar.zst")])

        if granularity == "label":
            with open_tar_zst(failing_together_db) as tar:
                tar.add(failing_together_db[: -len(".tar.zst")])
コード例 #22
0
def count(is_first_task, is_second_task):
    updated = download_check_etag(
        test_scheduling.PUSH_DATA_URL.format(granularity="label"))
    if updated:
        zstd_decompress("push_data_label.json")

    with open("push_data_label.json", "r") as f:
        push_data = json.load(f)

    print(f"Analyzing {len(push_data)} pushes...")

    all_tasks = set(task for _, push_tasks, _, _ in push_data
                    for task in push_tasks)

    print(f"Considering {len(all_tasks)} tasks...")

    count_runs = 0
    count_any_of_the_two = 0
    count_first_but_not_second = 0
    count_second_but_not_first = 0

    for push in push_data:
        (revisions, push_tasks, possible_regressions,
         likely_regressions) = push

        first_group_tasks = [
            task.split("/")[1] for task in push_tasks if is_first_task(task)
        ]
        second_group_tasks = [
            task.split("/")[1] for task in push_tasks if is_second_task(task)
        ]

        if len(first_group_tasks) == 0 and len(second_group_tasks) == 0:
            continue

        in_both_tasks = set(first_group_tasks) & set(second_group_tasks)

        # Only consider pushes where tasks run in both groups.
        if len(in_both_tasks) == 0:
            continue

        count_runs += 1

        failures = [
            task for task in likely_regressions + possible_regressions if any(
                task.endswith(in_both_task) for in_both_task in in_both_tasks)
        ]

        first_failures = [task for task in failures if is_first_task(task)]
        second_failures = [task for task in failures if is_second_task(task)]

        if len(first_failures) > 0 or len(second_failures) > 0:
            count_any_of_the_two += 1

        if len(first_failures) > 0 and len(second_failures) == 0:
            count_first_but_not_second += 1
        elif len(first_failures) == 0 and len(second_failures) > 0:
            count_second_but_not_first += 1

    return (
        count_runs,
        count_any_of_the_two,
        count_first_but_not_second,
        count_second_but_not_first,
    )
コード例 #23
0
    def generate_test_scheduling_history(self):
        if not os.path.exists("push_data.json"):
            download_check_etag(PUSH_DATA_URL, "push_data.json.zst")
            zstd_decompress("push_data.json")
            assert os.path.exists(
                "push_data.json"), "Decompressed push data file exists"

        # Get the commits DB.
        if db.is_old_version(
                repository.COMMITS_DB) or not db.exists(repository.COMMITS_DB):
            db.download(repository.COMMITS_DB, force=True)

        HISTORY_DATE_START = datetime.now() - relativedelta(
            months=TRAINING_MONTHS)

        with open("push_data.json", "r") as f:
            data = json.load(f)

        push_data = {}
        for row in data[1:]:
            # Revision -> (all tasks, possible regressions, likely regressions)
            push_data[row[0]] = (row[1], row[2], row[3])

        logger.info(f"push data nodes: {len(push_data)}")

        HISTORICAL_TIMESPAN = 56

        if not db.is_old_version(test_scheduling.TEST_SCHEDULING_DB):
            db.download(test_scheduling.TEST_SCHEDULING_DB,
                        support_files_too=True)

            for test_data in test_scheduling.get_test_scheduling_history():
                pass

            last_node = test_data["rev"]
        else:
            last_node = None

        past_failures = shelve.open(
            "data/past_failures.shelve",
            protocol=pickle.HIGHEST_PROTOCOL,
            writeback=True,
        )

        push_num = past_failures[
            "push_num"] if "push_num" in past_failures else 0

        def get_and_update_past_failures(type_, task, items, push_num,
                                         is_regression):
            values_total = []
            values_prev_7 = []
            values_prev_14 = []
            values_prev_28 = []
            values_prev_56 = []

            key = f"{type_}${task}$"

            for item in items:
                full_key = key + item

                if full_key not in past_failures:
                    cur = past_failures[full_key] = ExpQueue(
                        push_num, HISTORICAL_TIMESPAN + 1, 0)
                else:
                    cur = past_failures[full_key]

                value = cur[push_num]

                values_total.append(value)
                values_prev_7.append(value - cur[push_num - 7])
                values_prev_14.append(value - cur[push_num - 14])
                values_prev_28.append(value - cur[push_num - 28])
                values_prev_56.append(value - cur[push_num - 56])

                if is_regression:
                    cur[push_num] = value + 1

            return (
                sum(values_total),
                sum(values_prev_7),
                sum(values_prev_14),
                sum(values_prev_28),
                sum(values_prev_56),
            )

        def generate_data():
            nonlocal push_num
            commits_with_data = set()
            saved_nodes = set()

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False
            for commit_data in tqdm(repository.get_commits()):
                node = commit_data["node"]

                # Sync DB every 1000 commits, so we cleanup the shelve cache (we'd run OOM otherwise!).
                if len(commits_with_data) % 1000 == 0:
                    past_failures.sync()

                if node == last_node:
                    can_start = True
                    continue

                if not can_start:
                    continue

                if node not in push_data:
                    continue

                commits_with_data.add(node)

                commit_push_data = push_data[node]

                for task in commit_push_data[0]:
                    if not any(task.startswith(j) for j in JOBS_TO_CONSIDER):
                        continue

                    is_regression = (task in commit_push_data[1]
                                     or task in commit_push_data[2])

                    (
                        total_failures,
                        past_7_pushes_failures,
                        past_14_pushes_failures,
                        past_28_pushes_failures,
                        past_56_pushes_failures,
                    ) = get_and_update_past_failures("all", task, ["all"],
                                                     push_num, is_regression)

                    (
                        total_types_failures,
                        past_7_pushes_types_failures,
                        past_14_pushes_types_failures,
                        past_28_pushes_types_failures,
                        past_56_pushes_types_failures,
                    ) = get_and_update_past_failures("type", task,
                                                     commit_data["types"],
                                                     push_num, is_regression)

                    (
                        total_files_failures,
                        past_7_pushes_files_failures,
                        past_14_pushes_files_failures,
                        past_28_pushes_files_failures,
                        past_56_pushes_files_failures,
                    ) = get_and_update_past_failures("file", task,
                                                     commit_data["files"],
                                                     push_num, is_regression)

                    (
                        total_directories_failures,
                        past_7_pushes_directories_failures,
                        past_14_pushes_directories_failures,
                        past_28_pushes_directories_failures,
                        past_56_pushes_directories_failures,
                    ) = get_and_update_past_failures(
                        "directory",
                        task,
                        commit_data["directories"],
                        push_num,
                        is_regression,
                    )

                    (
                        total_components_failures,
                        past_7_pushes_components_failures,
                        past_14_pushes_components_failures,
                        past_28_pushes_components_failures,
                        past_56_pushes_components_failures,
                    ) = get_and_update_past_failures(
                        "component",
                        task,
                        commit_data["components"],
                        push_num,
                        is_regression,
                    )

                    pushdate = dateutil.parser.parse(commit_data["pushdate"])
                    if pushdate > HISTORY_DATE_START:
                        saved_nodes.add(node)

                        yield {
                            "rev": node,
                            "name": task,
                            "failures": total_failures,
                            "failures_past_7_pushes": past_7_pushes_failures,
                            "failures_past_14_pushes": past_14_pushes_failures,
                            "failures_past_28_pushes": past_28_pushes_failures,
                            "failures_past_56_pushes": past_56_pushes_failures,
                            "failures_in_types": total_types_failures,
                            "failures_past_7_pushes_in_types":
                            past_7_pushes_types_failures,
                            "failures_past_14_pushes_in_types":
                            past_14_pushes_types_failures,
                            "failures_past_28_pushes_in_types":
                            past_28_pushes_types_failures,
                            "failures_past_56_pushes_in_types":
                            past_56_pushes_types_failures,
                            "failures_in_files": total_files_failures,
                            "failures_past_7_pushes_in_files":
                            past_7_pushes_files_failures,
                            "failures_past_14_pushes_in_files":
                            past_14_pushes_files_failures,
                            "failures_past_28_pushes_in_files":
                            past_28_pushes_files_failures,
                            "failures_past_56_pushes_in_files":
                            past_56_pushes_files_failures,
                            "failures_in_directories":
                            total_directories_failures,
                            "failures_past_7_pushes_in_directories":
                            past_7_pushes_directories_failures,
                            "failures_past_14_pushes_in_directories":
                            past_14_pushes_directories_failures,
                            "failures_past_28_pushes_in_directories":
                            past_28_pushes_directories_failures,
                            "failures_past_56_pushes_in_directories":
                            past_56_pushes_directories_failures,
                            "failures_in_components":
                            total_components_failures,
                            "failures_past_7_pushes_in_components":
                            past_7_pushes_components_failures,
                            "failures_past_14_pushes_in_components":
                            past_14_pushes_components_failures,
                            "failures_past_28_pushes_in_components":
                            past_28_pushes_components_failures,
                            "failures_past_56_pushes_in_components":
                            past_56_pushes_components_failures,
                            "is_possible_regression": task
                            in commit_push_data[1],
                            "is_likely_regression": task
                            in commit_push_data[2],
                        }

                # We no longer need the push data for this node, we can free the memory.
                del push_data[node]

                push_num += 1

            logger.info(
                f"commits linked to push data: {len(commits_with_data)}")

            logger.info(f"saved push data nodes: {len(saved_nodes)}")

        db.append(test_scheduling.TEST_SCHEDULING_DB, generate_data())

        zstd_compress(test_scheduling.TEST_SCHEDULING_DB)

        past_failures["push_num"] = push_num
        past_failures.close()
        zstd_compress("data/past_failures.shelve")
コード例 #24
0
    def generate_test_scheduling_history(self):
        if not os.path.exists("push_data.json"):
            download_check_etag(PUSH_DATA_URL)
            zstd_decompress("push_data.json")
            assert os.path.exists(
                "push_data.json"), "Decompressed push data file exists"

        # Get the commits DB.
        assert db.download(repository.COMMITS_DB)

        HISTORY_DATE_START = datetime.now() - relativedelta(
            months=TRAINING_MONTHS)

        db.download(test_scheduling.TEST_SCHEDULING_DB, support_files_too=True)

        last_node = None
        for test_data in test_scheduling.get_test_scheduling_history():
            last_node = test_data["revs"][0]

        def generate_all_data():
            past_failures = test_scheduling.get_past_failures()

            push_num = past_failures[
                "push_num"] if "push_num" in past_failures else 0

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            commit_map = {}
            for commit_data in tqdm(repository.get_commits()):
                if not can_start:
                    if last_node == commit_data["node"]:
                        can_start = True

                    continue

                commit_map[commit_data["node"]] = commit_data

            with open("push_data.json", "r") as f:
                push_data = json.load(f)[1:]

            logger.info(f"push data nodes: {len(push_data)}")

            # In the last 28 pushes, we definitely run all possible tasks.
            all_tasks_set = set(
                sum((push_tasks for _, push_tasks, _, _ in push_data[-28:]),
                    []))
            # Filter tasks we don't need.
            all_tasks = filter_tasks(list(all_tasks_set), all_tasks_set)
            all_tasks_set = set(all_tasks)
            logger.info(
                f"{len(all_tasks_set)} tasks run in the last 28 pushes")

            # Store all tasks in the past_failures DB so it can be used in the evaluation phase.
            past_failures["all_tasks"] = all_tasks
            # XXX: Should we recreate the DB from scratch if the previous all_tasks are not the
            # same as the current ones?

            saved_nodes = set()
            skipped_no_commits = 0
            skipped_too_big_commits = 0
            skipped_no_tasks = 0

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            for i in tqdm(range(len(push_data))):
                (
                    revisions,
                    push_tasks,
                    possible_regressions,
                    likely_regressions,
                ) = push_data.pop(0)

                if not can_start:
                    if last_node == revisions[0]:
                        can_start = True

                    continue

                push_num += 1

                # XXX: Some commits are skipped in the repository mining, e.g. merges and backouts. Maybe we should not skip them.
                commits = tuple(
                    commit_map.pop(revision) for revision in revisions
                    if revision in commit_map)
                if len(commits) == 0:
                    skipped_no_commits += 1
                    continue

                merged_commits = commit_features.merge_commits(commits)

                # XXX: For now, skip commits which are too large.
                # In the future we can either:
                #  - Improve shelve perf and go back to consider all files;
                #  - Consider only files which appear with a given frequency, like the "files" feature in commit_features;
                #  - Keep a limit of number of files.
                if len(merged_commits["files"]) > 50:
                    skipped_too_big_commits += 1
                    continue

                # If we considered all_tasks, we'd generate a huge amount of data.
                # So we consider only the tasks which run in this push, and the possible and likely regressions
                # from this push.
                tasks_to_consider = list(
                    set(push_tasks + possible_regressions +
                        likely_regressions))
                tasks_to_consider = filter_tasks(tasks_to_consider,
                                                 all_tasks_set)

                if len(tasks_to_consider) == 0:
                    skipped_no_tasks += 1
                    continue

                # Sync DB every 250 pushes, so we cleanup the shelve cache (we'd run OOM otherwise!).
                if i % 250 == 0:
                    past_failures.sync()

                pushdate = dateutil.parser.parse(merged_commits["pushdate"])

                for data in test_scheduling.generate_data(
                        past_failures,
                        merged_commits,
                        push_num,
                        tasks_to_consider,
                        possible_regressions,
                        likely_regressions,
                ):
                    if pushdate > HISTORY_DATE_START:
                        saved_nodes.add(i)
                        data["revs"] = revisions
                        yield data

            logger.info(f"saved push data nodes: {len(saved_nodes)}")
            logger.info(f"skipped {skipped_no_commits} (no commits in our DB)")
            logger.info(f"skipped {skipped_too_big_commits} (too big commits)")
            logger.info(f"skipped {skipped_no_tasks} (no interesting tasks)")

            past_failures["push_num"] = push_num
            past_failures.close()

        db.append(test_scheduling.TEST_SCHEDULING_DB, generate_all_data())

        zstd_compress(test_scheduling.TEST_SCHEDULING_DB)

        with open_tar_zst("data/past_failures.lmdb.tar.zst") as tar:
            tar.add("data/past_failures.lmdb")
コード例 #25
0
ファイル: bug_classifier.py プロジェクト: vk-98/bugbug
def classify_bugs(model_name, classifier, bug_id):
    if classifier != "default":
        assert (
            model_name in MODELS_WITH_TYPE
        ), f"{classifier} is not a valid classifier type for {model_name}"

        model_file_name = f"{model_name}{classifier}model"
        model_name = f"{model_name}_{classifier}"
    else:
        model_file_name = f"{model_name}model"

    if not os.path.exists(model_file_name):
        logger.info(
            f"{model_file_name} does not exist. Downloading the model....")
        try:
            download_check_etag(
                f"https://community-tc.services.mozilla.com/api/index/v1/task/project.relman.bugbug.train_{model_name}.latest/artifacts/public/{model_file_name}.zst"
            )
        except requests.HTTPError:
            logger.error(
                f"A pre-trained model is not available, you will need to train it yourself using the trainer script"
            )
            raise SystemExit(1)

        zstd_decompress(model_file_name)
        assert os.path.exists(
            model_file_name), "Decompressed file doesn't exist"

    model_class = get_model_class(model_name)
    model = model_class.load(model_file_name)

    if bug_id:
        bugs = bugzilla.get(bug_id).values()
        assert bugs, f"A bug with a bug id of {bug_id} was not found"
    else:
        assert db.download(bugzilla.BUGS_DB)
        bugs = bugzilla.get_bugs()

    for bug in bugs:
        print(
            f'https://bugzilla.mozilla.org/show_bug.cgi?id={bug["id"]} - {bug["summary"]} '
        )

        if model.calculate_importance:
            probas, importance = model.classify(bug,
                                                probabilities=True,
                                                importances=True)

            model.print_feature_importances(importance["importances"],
                                            class_probabilities=probas)
        else:
            probas = model.classify(bug, probabilities=True, importances=False)

        probability = probas[0]
        pred_index = np.argmax(probability)
        if len(probability) > 2:
            pred_class = model.le.inverse_transform([pred_index])[0]
        else:
            pred_class = "Positive" if pred_index == 1 else "Negative"
        print(f"{pred_class} {probability}")
        input()
コード例 #26
0
    def generate_test_scheduling_history(self, granularity):
        push_data_path = f"push_data_{granularity}.json"
        updated = download_check_etag(
            test_scheduling.PUSH_DATA_URL.format(granularity=granularity))
        if updated:
            zstd_decompress(push_data_path)
        assert os.path.exists(
            push_data_path), "Decompressed push data file exists"

        # Get the commits DB.
        assert db.download(repository.COMMITS_DB)

        HISTORY_DATE_START = datetime.now() - relativedelta(
            months=TRAINING_MONTHS[granularity])

        if granularity == "label":
            test_scheduling_db = test_scheduling.TEST_LABEL_SCHEDULING_DB
            past_failures_db = os.path.join(
                "data", test_scheduling.PAST_FAILURES_LABEL_DB)
        elif granularity == "group":
            test_scheduling_db = test_scheduling.TEST_GROUP_SCHEDULING_DB
            past_failures_db = os.path.join(
                "data", test_scheduling.PAST_FAILURES_GROUP_DB)
            touched_together_db = os.path.join(
                "data", test_scheduling.TOUCHED_TOGETHER_DB)

        db.download(test_scheduling_db, support_files_too=True)

        last_node = None
        for test_data in test_scheduling.get_test_scheduling_history(
                granularity):
            last_node = test_data["revs"][0]

        def generate_all_data():
            past_failures = test_scheduling.get_past_failures(granularity)

            push_num = past_failures[
                "push_num"] if "push_num" in past_failures else 0

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            commit_map = {}
            for commit_data in tqdm(repository.get_commits()):
                if not can_start:
                    if last_node == commit_data["node"]:
                        can_start = True

                    continue

                commit_map[commit_data["node"]] = commit_data

            with open(push_data_path, "r") as f:
                push_data = json.load(f)

            logger.info(f"push data nodes: {len(push_data)}")

            if granularity == "label":
                push_data = [(
                    revisions,
                    rename_tasks(push_tasks),
                    rename_tasks(possible_regressions),
                    rename_tasks(likely_regressions),
                ) for revisions, push_tasks, possible_regressions,
                             likely_regressions in push_data]

            # In the last 28 pushes, we definitely run all possible runnables.
            all_runnables_set = set(
                sum((push_runnables
                     for _, push_runnables, _, _ in push_data[-28:]), []))
            # Filter runnables we don't need.
            all_runnables = filter_runnables(list(all_runnables_set),
                                             all_runnables_set, granularity)
            all_runnables_set = set(all_runnables_set)
            logger.info(
                f"{len(all_runnables_set)} runnables run in the last 28 pushes"
            )

            # Store all runnables in the past_failures DB so it can be used in the evaluation phase.
            past_failures["all_runnables"] = all_runnables
            # XXX: Should we recreate the DB from scratch if the previous all_runnables are not the
            # same as the current ones?

            saved_nodes = set()
            skipped_no_commits = 0
            skipped_too_big_commits = 0
            skipped_no_runnables = 0

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            if granularity == "group":
                update_touched_together_gen = test_scheduling.update_touched_together(
                )
                next(update_touched_together_gen)

            for i in tqdm(range(len(push_data))):
                (
                    revisions,
                    push_runnables,
                    possible_regressions,
                    likely_regressions,
                ) = push_data.pop(0)

                if not can_start:
                    if last_node == revisions[0]:
                        can_start = True

                    continue

                push_num += 1

                # XXX: Some commits are skipped in the repository mining, e.g. merges and backouts. Maybe we should not skip them.
                commits = tuple(
                    commit_map.pop(revision) for revision in revisions
                    if revision in commit_map)
                if len(commits) == 0:
                    skipped_no_commits += 1
                    continue

                merged_commits = commit_features.merge_commits(commits)

                # XXX: For now, skip commits which are too large.
                # In the future we can either:
                #  - Improve shelve perf and go back to consider all files;
                #  - Consider only files which appear with a given frequency, like the "files" feature in commit_features;
                #  - Keep a limit of number of files.
                if len(merged_commits["files"]) > 50:
                    skipped_too_big_commits += 1
                    continue

                # If we considered all_runnables, we'd generate a huge amount of data.
                # So we consider only the runnables which run in this push, and the possible and likely regressions
                # from this push.
                runnables_to_consider = list(
                    set(push_runnables + possible_regressions +
                        likely_regressions))
                runnables_to_consider = filter_runnables(
                    runnables_to_consider, all_runnables_set, granularity)

                if len(runnables_to_consider) == 0:
                    skipped_no_runnables += 1
                    continue

                # Sync DB every 250 pushes, so we cleanup the shelve cache (we'd run OOM otherwise!).
                if i % 250 == 0:
                    past_failures.sync()

                pushdate = dateutil.parser.parse(merged_commits["pushdate"])

                if granularity == "group":
                    update_touched_together_gen.send(commits[0]["node"])

                for data in test_scheduling.generate_data(
                        past_failures,
                        merged_commits,
                        push_num,
                        runnables_to_consider,
                        possible_regressions,
                        likely_regressions,
                ):
                    if pushdate > HISTORY_DATE_START:
                        saved_nodes.add(i)
                        data["revs"] = revisions
                        yield data

            if granularity == "group":
                try:
                    update_touched_together_gen.send(None)
                except StopIteration:
                    pass

            logger.info(f"saved push data nodes: {len(saved_nodes)}")
            logger.info(f"skipped {skipped_no_commits} (no commits in our DB)")
            logger.info(f"skipped {skipped_too_big_commits} (too big commits)")
            logger.info(
                f"skipped {skipped_no_runnables} (no interesting runnables)")

            past_failures["push_num"] = push_num
            past_failures.close()

        db.append(test_scheduling_db, generate_all_data())

        zstd_compress(test_scheduling_db)

        with open_tar_zst(past_failures_db) as tar:
            tar.add(past_failures_db[:-len(".tar.zst")])

        if granularity == "group":
            with open_tar_zst(touched_together_db) as tar:
                tar.add(touched_together_db[:-len(".tar.zst")])
コード例 #27
0
    def generate_test_scheduling_history(self):
        if not os.path.exists("push_data.json"):
            download_check_etag(PUSH_DATA_URL, "push_data.json.zst")
            zstd_decompress("push_data.json")
            assert os.path.exists(
                "push_data.json"
            ), "Decompressed push data file exists"

        # Get the commits DB.
        if db.is_old_version(repository.COMMITS_DB) or not db.exists(
            repository.COMMITS_DB
        ):
            db.download(repository.COMMITS_DB, force=True)

        HISTORY_DATE_START = datetime.now() - relativedelta(months=TRAINING_MONTHS)

        with open("push_data.json", "r") as f:
            data = json.load(f)

        push_data = {}
        for row in data[1:]:
            # Revision -> (all tasks, possible regressions, likely regressions)
            push_data[row[0]] = (row[1], row[2], row[3])

        HISTORICAL_TIMESPAN = 56

        if not db.is_old_version(test_scheduling.TEST_SCHEDULING_DB):
            db.download(test_scheduling.TEST_SCHEDULING_DB, support_files_too=True)

            for test_data in test_scheduling.get_test_scheduling_history():
                pass

            last_node = test_data["rev"]
        else:
            last_node = None

        try:
            with open("data/past_failures.pickle", "rb") as f:
                past_failures, push_num = pickle.load(f)
        except FileNotFoundError:
            past_failures = {}
            push_num = 0

        def get_and_update_past_failures(type_, task, items, push_num, is_regression):
            if type_ not in past_failures:
                past_failures[type_] = {}

            if task not in past_failures[type_]:
                past_failures[type_][task] = {}

            values_total = []
            values_prev_7 = []
            values_prev_14 = []
            values_prev_28 = []
            values_prev_56 = []

            for item in items:
                if item not in past_failures[type_][task]:
                    past_failures[type_][task][item] = ExpQueue(
                        push_num, HISTORICAL_TIMESPAN + 1, 0
                    )

                value = past_failures[type_][task][item][push_num]

                values_total.append(value)
                values_prev_7.append(
                    value - past_failures[type_][task][item][push_num - 7]
                )
                values_prev_14.append(
                    value - past_failures[type_][task][item][push_num - 14]
                )
                values_prev_28.append(
                    value - past_failures[type_][task][item][push_num - 28]
                )
                values_prev_56.append(
                    value - past_failures[type_][task][item][push_num - 56]
                )

                if is_regression:
                    past_failures[type_][task][item][push_num] = value + 1

            return (
                sum(values_total),
                sum(values_prev_7),
                sum(values_prev_14),
                sum(values_prev_28),
                sum(values_prev_56),
            )

        def generate_data():
            nonlocal push_num
            commits_with_data = set()
            saved_nodes = set()

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False
            for commit_data in tqdm(repository.get_commits()):
                node = commit_data["node"]

                if node == last_node:
                    can_start = True
                    continue

                if not can_start:
                    continue

                if node not in push_data:
                    continue

                commits_with_data.add(node)

                commit_push_data = push_data[node]

                for task in commit_push_data[0]:
                    if not any(task.startswith(j) for j in JOBS_TO_CONSIDER):
                        continue

                    is_regression = (
                        task in commit_push_data[1] or task in commit_push_data[2]
                    )

                    total_failures, past_7_pushes_failures, past_14_pushes_failures, past_28_pushes_failures, past_56_pushes_failures = get_and_update_past_failures(
                        "all", task, ["all"], push_num, is_regression
                    )

                    total_types_failures, past_7_pushes_types_failures, past_14_pushes_types_failures, past_28_pushes_types_failures, past_56_pushes_types_failures = get_and_update_past_failures(
                        "type", task, commit_data["types"], push_num, is_regression
                    )

                    total_files_failures, past_7_pushes_files_failures, past_14_pushes_files_failures, past_28_pushes_files_failures, past_56_pushes_files_failures = get_and_update_past_failures(
                        "file", task, commit_data["files"], push_num, is_regression
                    )

                    total_directories_failures, past_7_pushes_directories_failures, past_14_pushes_directories_failures, past_28_pushes_directories_failures, past_56_pushes_directories_failures = get_and_update_past_failures(
                        "directory",
                        task,
                        commit_data["directories"],
                        push_num,
                        is_regression,
                    )

                    total_components_failures, past_7_pushes_components_failures, past_14_pushes_components_failures, past_28_pushes_components_failures, past_56_pushes_components_failures = get_and_update_past_failures(
                        "component",
                        task,
                        commit_data["components"],
                        push_num,
                        is_regression,
                    )

                    pushdate = dateutil.parser.parse(commit_data["pushdate"])
                    if pushdate > HISTORY_DATE_START:
                        saved_nodes.add(node)

                        yield {
                            "rev": node,
                            "name": task,
                            "failures": total_failures,
                            "failures_past_7_pushes": past_7_pushes_failures,
                            "failures_past_14_pushes": past_14_pushes_failures,
                            "failures_past_28_pushes": past_28_pushes_failures,
                            "failures_past_56_pushes": past_56_pushes_failures,
                            "failures_in_types": total_types_failures,
                            "failures_past_7_pushes_in_types": past_7_pushes_types_failures,
                            "failures_past_14_pushes_in_types": past_14_pushes_types_failures,
                            "failures_past_28_pushes_in_types": past_28_pushes_types_failures,
                            "failures_past_56_pushes_in_types": past_56_pushes_types_failures,
                            "failures_in_files": total_files_failures,
                            "failures_past_7_pushes_in_files": past_7_pushes_files_failures,
                            "failures_past_14_pushes_in_files": past_14_pushes_files_failures,
                            "failures_past_28_pushes_in_files": past_28_pushes_files_failures,
                            "failures_past_56_pushes_in_files": past_56_pushes_files_failures,
                            "failures_in_directories": total_directories_failures,
                            "failures_past_7_pushes_in_directories": past_7_pushes_directories_failures,
                            "failures_past_14_pushes_in_directories": past_14_pushes_directories_failures,
                            "failures_past_28_pushes_in_directories": past_28_pushes_directories_failures,
                            "failures_past_56_pushes_in_directories": past_56_pushes_directories_failures,
                            "failures_in_components": total_components_failures,
                            "failures_past_7_pushes_in_components": past_7_pushes_components_failures,
                            "failures_past_14_pushes_in_components": past_14_pushes_components_failures,
                            "failures_past_28_pushes_in_components": past_28_pushes_components_failures,
                            "failures_past_56_pushes_in_components": past_56_pushes_components_failures,
                            "is_possible_regression": task in commit_push_data[1],
                            "is_likely_regression": task in commit_push_data[2],
                        }

                push_num += 1

            logger.info(f"push data nodes: {len(push_data)}")

            logger.info(f"commits linked to push data: {len(commits_with_data)}")

            logger.info(f"saved push data nodes: {len(saved_nodes)}")

        db.append(test_scheduling.TEST_SCHEDULING_DB, generate_data())

        zstd_compress(test_scheduling.TEST_SCHEDULING_DB)

        with open("data/past_failures.pickle", "wb") as f:
            pickle.dump((past_failures, push_num), f, protocol=pickle.HIGHEST_PROTOCOL)

        zstd_compress("data/past_failures.pickle")
コード例 #28
0
    def generate_test_scheduling_history(self):
        if not os.path.exists("push_data.json"):
            download_check_etag(PUSH_DATA_URL, "push_data.json.zst")
            zstd_decompress("push_data.json")
            assert os.path.exists(
                "push_data.json"), "Decompressed push data file exists"

        # Get the commits DB.
        if db.is_old_version(
                repository.COMMITS_DB) or not db.exists(repository.COMMITS_DB):
            db.download(repository.COMMITS_DB, force=True)

        HISTORY_DATE_START = datetime.now() - relativedelta(
            months=TRAINING_MONTHS)

        HISTORICAL_TIMESPAN = 56

        if not db.is_old_version(test_scheduling.TEST_SCHEDULING_DB):
            db.download(test_scheduling.TEST_SCHEDULING_DB,
                        support_files_too=True)

            for test_data in test_scheduling.get_test_scheduling_history():
                pass

            last_node = test_data["revs"][0]
        else:
            last_node = None

        past_failures = shelve.Shelf(
            LMDBDict("data/past_failures.lmdb"),
            protocol=pickle.HIGHEST_PROTOCOL,
            writeback=True,
        )

        push_num = past_failures[
            "push_num"] if "push_num" in past_failures else 0

        def get_and_update_past_failures(type_, task, items, push_num,
                                         is_regression):
            values_total = []
            values_prev_7 = []
            values_prev_14 = []
            values_prev_28 = []
            values_prev_56 = []

            key = f"{type_}${task}$"

            for item in items:
                full_key = key + item

                if full_key not in past_failures:
                    cur = past_failures[full_key] = ExpQueue(
                        push_num, HISTORICAL_TIMESPAN + 1, 0)
                else:
                    cur = past_failures[full_key]

                value = cur[push_num]

                values_total.append(value)
                values_prev_7.append(value - cur[push_num - 7])
                values_prev_14.append(value - cur[push_num - 14])
                values_prev_28.append(value - cur[push_num - 28])
                values_prev_56.append(value - cur[push_num - 56])

                if is_regression:
                    cur[push_num] = value + 1

            return (
                sum(values_total),
                sum(values_prev_7),
                sum(values_prev_14),
                sum(values_prev_28),
                sum(values_prev_56),
            )

        def generate_data():
            nonlocal push_num
            saved_nodes = set()
            skipped_no_commits = 0
            skipped_too_big_commits = 0
            skipped_no_tasks = 0

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            commit_map = {}
            for commit_data in tqdm(repository.get_commits()):
                if not can_start:
                    if last_node == commit_data["node"]:
                        can_start = True

                    continue

                commit_map[commit_data["node"]] = commit_data

            with open("push_data.json", "r") as f:
                push_data = json.load(f)[1:]

            logger.info(f"push data nodes: {len(push_data)}")

            # In the last 28 pushes, we definitely run all possible tasks.
            all_tasks_set = set(
                sum((push_tasks for _, push_tasks, _, _ in push_data[-28:]),
                    []))
            # Filter tasks we don't need.
            all_tasks = filter_tasks(list(all_tasks_set), all_tasks_set)
            all_tasks_set = set(all_tasks)
            logger.info(
                f"{len(all_tasks_set)} tasks run in the last 28 pushes")

            # We can start once we get to the last revision we added in the previous run.
            can_start = True if last_node is None else False

            for i in tqdm(range(len(push_data))):
                (
                    revisions,
                    push_tasks,
                    possible_regressions,
                    likely_regressions,
                ) = push_data.pop(0)

                if not can_start:
                    if last_node == revisions[0]:
                        can_start = True

                    continue

                push_num += 1

                # XXX: Some commits are skipped in the repository mining, e.g. merges and backouts. Maybe we should not skip them.
                commits = tuple(
                    commit_map.pop(revision) for revision in revisions
                    if revision in commit_map)
                if len(commits) == 0:
                    skipped_no_commits += 1
                    continue

                merged_commits = commit_features.merge_commits(commits)

                # XXX: For now, skip commits which are too large.
                # In the future we can either:
                #  - Improve shelve perf and go back to consider all files;
                #  - Consider only files which appear with a given frequency, like the "files" feature in commit_features;
                #  - Keep a limit of number of files.
                if len(merged_commits["files"]) > 20:
                    skipped_too_big_commits += 1
                    continue

                # If we considered all_tasks, we'd generate a huge amount of data.
                # So we consider only the tasks which run in this push, and the possible and likely regressions
                # from this push.
                tasks_to_consider = list(
                    set(push_tasks + possible_regressions +
                        likely_regressions))
                tasks_to_consider = filter_tasks(tasks_to_consider,
                                                 all_tasks_set)

                if len(tasks_to_consider) == 0:
                    skipped_no_tasks += 1
                    continue

                # Sync DB every 250 pushes, so we cleanup the shelve cache (we'd run OOM otherwise!).
                if i % 250 == 0:
                    past_failures.sync()

                pushdate = dateutil.parser.parse(merged_commits["pushdate"])

                for task in tasks_to_consider:
                    is_regression = (task in possible_regressions
                                     or task in likely_regressions)

                    (
                        total_failures,
                        past_7_pushes_failures,
                        past_14_pushes_failures,
                        past_28_pushes_failures,
                        past_56_pushes_failures,
                    ) = get_and_update_past_failures("all", task, ["all"],
                                                     push_num, is_regression)

                    (
                        total_types_failures,
                        past_7_pushes_types_failures,
                        past_14_pushes_types_failures,
                        past_28_pushes_types_failures,
                        past_56_pushes_types_failures,
                    ) = get_and_update_past_failures("type", task,
                                                     merged_commits["types"],
                                                     push_num, is_regression)

                    (
                        total_files_failures,
                        past_7_pushes_files_failures,
                        past_14_pushes_files_failures,
                        past_28_pushes_files_failures,
                        past_56_pushes_files_failures,
                    ) = get_and_update_past_failures("file", task,
                                                     merged_commits["files"],
                                                     push_num, is_regression)

                    (
                        total_directories_failures,
                        past_7_pushes_directories_failures,
                        past_14_pushes_directories_failures,
                        past_28_pushes_directories_failures,
                        past_56_pushes_directories_failures,
                    ) = get_and_update_past_failures(
                        "directory",
                        task,
                        merged_commits["directories"],
                        push_num,
                        is_regression,
                    )

                    (
                        total_components_failures,
                        past_7_pushes_components_failures,
                        past_14_pushes_components_failures,
                        past_28_pushes_components_failures,
                        past_56_pushes_components_failures,
                    ) = get_and_update_past_failures(
                        "component",
                        task,
                        merged_commits["components"],
                        push_num,
                        is_regression,
                    )

                    if pushdate > HISTORY_DATE_START:
                        saved_nodes.add(i)

                        yield {
                            "revs": revisions,
                            "name": task,
                            "failures": total_failures,
                            "failures_past_7_pushes": past_7_pushes_failures,
                            "failures_past_14_pushes": past_14_pushes_failures,
                            "failures_past_28_pushes": past_28_pushes_failures,
                            "failures_past_56_pushes": past_56_pushes_failures,
                            "failures_in_types": total_types_failures,
                            "failures_past_7_pushes_in_types":
                            past_7_pushes_types_failures,
                            "failures_past_14_pushes_in_types":
                            past_14_pushes_types_failures,
                            "failures_past_28_pushes_in_types":
                            past_28_pushes_types_failures,
                            "failures_past_56_pushes_in_types":
                            past_56_pushes_types_failures,
                            "failures_in_files": total_files_failures,
                            "failures_past_7_pushes_in_files":
                            past_7_pushes_files_failures,
                            "failures_past_14_pushes_in_files":
                            past_14_pushes_files_failures,
                            "failures_past_28_pushes_in_files":
                            past_28_pushes_files_failures,
                            "failures_past_56_pushes_in_files":
                            past_56_pushes_files_failures,
                            "failures_in_directories":
                            total_directories_failures,
                            "failures_past_7_pushes_in_directories":
                            past_7_pushes_directories_failures,
                            "failures_past_14_pushes_in_directories":
                            past_14_pushes_directories_failures,
                            "failures_past_28_pushes_in_directories":
                            past_28_pushes_directories_failures,
                            "failures_past_56_pushes_in_directories":
                            past_56_pushes_directories_failures,
                            "failures_in_components":
                            total_components_failures,
                            "failures_past_7_pushes_in_components":
                            past_7_pushes_components_failures,
                            "failures_past_14_pushes_in_components":
                            past_14_pushes_components_failures,
                            "failures_past_28_pushes_in_components":
                            past_28_pushes_components_failures,
                            "failures_past_56_pushes_in_components":
                            past_56_pushes_components_failures,
                            "is_possible_regression": task
                            in possible_regressions,
                            "is_likely_regression": task in likely_regressions,
                        }

            logger.info(f"saved push data nodes: {len(saved_nodes)}")
            logger.info(f"skipped {skipped_no_commits} (no commits in our DB)")
            logger.info(f"skipped {skipped_too_big_commits} (too big commits)")
            logger.info(f"skipped {skipped_no_tasks} (no interesting tasks)")

        db.append(test_scheduling.TEST_SCHEDULING_DB, generate_data())

        zstd_compress(test_scheduling.TEST_SCHEDULING_DB)

        past_failures["push_num"] = push_num
        past_failures.close()
        with open_tar_zst("data/past_failures.lmdb.tar.zst") as tar:
            tar.add("data/past_failures.lmdb")