コード例 #1
0
    def _load_and_preprocess_data(self, images, labels):
        """Loads and preprocesses data

        Records `input_shape`, `data`, and `num_classes` into `self

        Args:
            images (numpy.array/str): array with shape (n_images, dim1, dim2 , channel_size), or a string with name of keras-dataset (cifar10, fashion_mnsit)
            labels (numpy.array): labels of images, array with shape (n_images) where each element is an integer from 0 to number of classes
        """
        if isinstance(images, str):
            X, y, self.input_shape = DataOp.load(images)
        else:
            X, y = images, labels
        self.input_shape = X.shape[1:]
        self.data = DataOp.preprocess(X, y, self.config["train_set_size"])
        self.num_classes = DataOp.find_num_classes(self.data)
コード例 #2
0
    def fit(self, data, augmented_data=None, epochs=None):
        """Fits the model with given data and augmented-data

        Args:
             data (dict): should have keys 'X_train' and 'y_train'
             augmented_data (dict): should have keys 'X_train' and 'y_train'. If none, augmented-data not used
             epochs (int):
        Returns:
            dict: history of training
        """

        if epochs is None:
            epochs = self.config["child_epochs"]

        if augmented_data is None:
            X_train = data["X_train"]
            y_train = data["y_train"]
        else:
            X_train = np.concatenate([data["X_train"], augmented_data["X_train"]])
            y_train = np.concatenate([data["y_train"], augmented_data["y_train"]])

        X_val, y_val = DataOp.sample_validation_set(data)

        record = self.model.fit(
            x=X_train,
            y=y_train,
            batch_size=self.config["child_batch_size"],
            epochs=epochs,
            validation_data=(X_val, y_val),
            shuffle=True,
            verbose=2,
        )
        return record.history
コード例 #3
0
def run_model(dataset_name, num_classes, epochs, batch_size, policies_path):

    data, input_shape = DataOp.load(dataset_name)
    data = DataOp.preprocess_normal(data)

    wrn_28_10 = ChildCNN(
        model_name="wrn_28_10",
        input_shape=input_shape,
        batch_size=batch_size,
        num_classes=num_classes,
        pre_augmentation_weights_path="initial_model_weights.h5",
        logging=logging,
    )

    if policies_path == "dont_augment":
        policy_str = "non_augmented"
    else:
        policy_str = "augmented"
    csv_logger = CSVLogger(
        f"{EXPERIMENT_FOLDER_PATH}/wrn_28_10_training_on_{dataset_name}_{policy_str}.csv"
    )

    if policies_path == "dont_augment":
        history = wrn_28_10.fit_normal(data,
                                       epochs=epochs,
                                       csv_logger=csv_logger)
        print(f"Reached validation accuracy is {history['val_acc'][-1]}")
    else:

        datagen = deepaugment_image_generator(
            data["X_train"],
            data["y_train"],
            policies_path,
            batch_size=batch_size,
            augment_chance=0.8,
        )
        print("fitting the model")
        history = wrn_28_10.fit_with_generator(
            datagen,
            data["X_val"],
            data["y_val"],
            train_data_size=len(data["X_train"]),
            epochs=epochs,
            csv_logger=csv_logger,
        )
        print(f"Reached validation accuracy is {history['val_acc'][-1]}")
コード例 #4
0
def main():

    X, y, input_shape = DataOp.load("cifar10")

    run_full_model(
        X,
        y,
        test_proportion=0.1,
        model="basiccnn",
        epochs=200,
        batch_size=32,
        policies_path="../../reports/best_policies/25_policies_cifar10.csv")
コード例 #5
0
def main():

    X, y, input_shape = DataOp.load("cifar10")

    run_full_model(
        X,
        y,
        test_proportion=0.1,
        model="wrn_28_10",
        epochs=100,
        batch_size=32,
        policies_path=
        "/home/acb11354uz/B4researchMain/B4ResearchDeepaugment/reports/best_policies/top20_policies_cifar10_exp_2019-02-08_03-54_3000_iters.csv"
    )
コード例 #6
0
def main():

    X, y, input_shape = DataOp.load("cifar10")

    run_full_model(
        X,
        y,
        test_proportion=0.1,
        model="wrn_40_2",
        epochs=100,
        batch_size=32,
        policies_path=
        "./deepaugment/reports/best_policies/top20_policies_cifar10_exp_2019-02-08_03-54_3000_iters.csv"
    )
コード例 #7
0
import numpy as np

import os
from keras.preprocessing import image
from sklearn.model_selection import train_test_split

import sys
from os.path import dirname, realpath

file_path = realpath(__file__)
dir_of_file = dirname(file_path)
parent_dir_of_file = dirname(dir_of_file)
sys.path.insert(0, parent_dir_of_file)

from run_full_model import run_full_model
from build_features import DataOp

X, y, input_shape = DataOp.load("cifar10")

run_full_model(X,
               y,
               test_proportion=0.1,
               epochs=200,
               batch_size=32,
               policies_path="random")
コード例 #8
0
def run_full_model(images,
                   labels,
                   test_proportion=0.1,
                   model="wrn_28_10",
                   epochs=200,
                   batch_size=64,
                   policies_path="dont_augment"):

    data = {}
    data["X_train"], data["X_val"], data["y_train"], data[
        "y_val"] = train_test_split(images,
                                    labels,
                                    test_size=test_proportion,
                                    shuffle=True)

    data = DataOp.preprocess_normal(data)

    input_shape = data["X_train"][0].shape
    num_classes = data["y_train"].shape[1]

    cnn_config = {
        "model": model,
        "weights": "imagenet",
        "input_shape": input_shape,
        "child_batch_size": batch_size,
        "pre_augmentation_weights_path": "initial_model_weights.h5",
        "logging": logging
    }

    full_model = ChildCNN(input_shape=input_shape,
                          num_classes=num_classes,
                          config=cnn_config)

    if policies_path == "dont_augment":
        policy_str = "non_augmented"
    else:
        policy_str = "augmented"
    csv_logger = CSVLogger(
        f"{EXPERIMENT_FOLDER_PATH}/wrn_28_10_training_on_{policy_str}.csv")

    if policies_path == "dont_augment":
        history = full_model.fit_normal(data,
                                        epochs=epochs,
                                        csv_logger=csv_logger)
        print(f"Reached validation accuracy is {history['val_acc'][-1]}")
    else:

        datagen = deepaugment_image_generator(
            data["X_train"],
            data["y_train"],
            policies_path,
            batch_size=batch_size,
            augment_chance=0.8,
        )
        file = open('datagen.txt', 'w')
        file.write(datagen)
        file.close()
        print("fitting the model")

        history = full_model.fit_with_generator(
            datagen,
            data["X_val"],
            data["y_val"],
            train_data_size=len(data["X_train"]),
            epochs=epochs,
            csv_logger=csv_logger,
        )
        print(f"Reached validation accuracy is {history['val_acc'][-1]}")