コード例 #1
0
def test_feature_set():
    return AggregatedFeatureSet(
        name="feature_set",
        entity="entity",
        description="description",
        features=[
            Feature(
                name="feature1",
                description="test",
                transformation=AggregatedTransform(functions=[
                    Function(functions.avg, DataType.DOUBLE),
                    Function(functions.stddev_pop, DataType.DOUBLE),
                ]),
            ),
            Feature(
                name="feature2",
                description="test",
                transformation=AggregatedTransform(
                    functions=[Function(functions.count, DataType.INTEGER)]),
            ),
        ],
        keys=[
            KeyFeature(
                name="id",
                description="The user's Main ID or device ID",
                dtype=DataType.BIGINT,
            )
        ],
        timestamp=TimestampFeature(),
    ).with_windows(definitions=["1 week", "2 days"])
コード例 #2
0
ファイル: conftest.py プロジェクト: quintoandar/butterfree
def agg_feature_set():
    return AggregatedFeatureSet(
        name="name",
        entity="entity",
        description="description",
        features=[
            Feature(
                name="feature1",
                description="test",
                transformation=AggregatedTransform(
                    functions=[Function(functions.avg, DataType.DOUBLE)], ),
            ),
            Feature(
                name="feature2",
                description="test",
                transformation=AggregatedTransform(
                    functions=[Function(functions.avg, DataType.DOUBLE)]),
            ),
        ],
        keys=[
            KeyFeature(
                name="id",
                description="description",
                dtype=DataType.BIGINT,
            )
        ],
        timestamp=TimestampFeature(),
    )
コード例 #3
0
    def test_construct_rolling_windows_with_end_date(
        self,
        feature_set_dataframe,
        rolling_windows_output_feature_set_dataframe_base_date,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(
                        functions=[
                            Function(F.avg, DataType.DOUBLE),
                            Function(F.stddev_pop, DataType.DOUBLE),
                        ],
                    ),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    transformation=AggregatedTransform(
                        functions=[
                            Function(F.avg, DataType.DOUBLE),
                            Function(F.stddev_pop, DataType.DOUBLE),
                        ],
                    ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 day", "1 week"])

        # act
        output_df = feature_set.construct(
            feature_set_dataframe, client=spark_client, end_date="2016-04-18"
        ).orderBy("timestamp")

        target_df = rolling_windows_output_feature_set_dataframe_base_date.orderBy(
            feature_set.timestamp_column
        ).select(feature_set.columns)

        # assert
        assert_dataframe_equality(output_df, target_df)
コード例 #4
0
    def test_feature_set_start_date(
        self,
        timestamp_c,
        feature_set_with_distinct_dataframe,
    ):
        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature",
                    description="test",
                    transformation=AggregatedTransform(
                        functions=[Function(functions.sum, DataType.INTEGER)]),
                ),
            ],
            keys=[
                KeyFeature(name="h3",
                           description="test",
                           dtype=DataType.STRING)
            ],
            timestamp=timestamp_c,
        ).with_windows(["10 days", "3 weeks", "90 days"])

        # assert
        start_date = fs.define_start_date("2016-04-14")

        assert start_date == "2016-01-14"
コード例 #5
0
    def test_feature_transform_with_distinct(
        self,
        timestamp_c,
        feature_set_with_distinct_dataframe,
        target_with_distinct_dataframe,
    ):
        spark_client = SparkClient()

        fs = (AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature",
                    description="test",
                    transformation=AggregatedTransform(
                        functions=[Function(functions.sum, DataType.INTEGER)]),
                ),
            ],
            keys=[
                KeyFeature(name="h3",
                           description="test",
                           dtype=DataType.STRING)
            ],
            timestamp=timestamp_c,
        ).with_windows(["3 days"]).with_distinct(subset=["id"], keep="last"))

        # assert
        output_df = fs.construct(feature_set_with_distinct_dataframe,
                                 spark_client,
                                 end_date="2020-01-10")
        assert_dataframe_equality(output_df, target_with_distinct_dataframe)
コード例 #6
0
    def test_h3_feature_set(self, h3_input_df, h3_target_df):
        spark_client = SparkClient()

        feature_set = AggregatedFeatureSet(
            name="h3_test",
            entity="h3geolocation",
            description="Test",
            keys=[
                KeyFeature(
                    name="h3_id",
                    description="The h3 hash ID",
                    dtype=DataType.DOUBLE,
                    transformation=H3HashTransform(
                        h3_resolutions=[6, 7, 8, 9, 10, 11, 12],
                        lat_column="lat",
                        lng_column="lng",
                    ).with_stack(),
                )
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="house_id",
                    description="Count of house ids over a day.",
                    transformation=AggregatedTransform(
                        functions=[Function(F.count, DataType.BIGINT)]),
                ),
            ],
        ).with_windows(definitions=["1 day"])

        output_df = feature_set.construct(h3_input_df,
                                          client=spark_client,
                                          end_date="2016-04-14")

        assert_dataframe_equality(output_df, h3_target_df)
コード例 #7
0
    def test_aggregations_with_filter_expression(self, spark_context):
        # arrange
        test_feature = Feature(
            name="feature_with_filter",
            description="unit test",
            transformation=AggregatedTransform(
                functions=[
                    Function(functions.avg, DataType.DOUBLE),
                    Function(functions.min, DataType.DOUBLE),
                    Function(functions.max, DataType.DOUBLE),
                ],
                filter_expression="type = 'a'",
            ),
            from_column="feature",
        )
        target_aggregations = [
            agg(
                functions.when(functions.expr("type = 'a'"),
                               functions.col("feature")))
            for agg in [functions.avg, functions.min, functions.max]
        ]

        # act
        output_aggregations = [
            agg.function for agg in test_feature.transformation.aggregations
        ]

        # assert

        # cast to string to compare the columns definitions because direct column
        # comparison was not working
        assert str(target_aggregations) == str(output_aggregations)
コード例 #8
0
    def test_feature_transform_with_distinct_empty_subset(
            self, timestamp_c, feature_set_with_distinct_dataframe):
        spark_client = SparkClient()

        with pytest.raises(ValueError,
                           match="The distinct subset param can't be empty."):
            AggregatedFeatureSet(
                name="name",
                entity="entity",
                description="description",
                features=[
                    Feature(
                        name="feature",
                        description="test",
                        transformation=AggregatedTransform(functions=[
                            Function(functions.sum, DataType.INTEGER)
                        ]),
                    ),
                ],
                keys=[
                    KeyFeature(name="h3",
                               description="test",
                               dtype=DataType.STRING)
                ],
                timestamp=timestamp_c,
            ).with_windows(["3 days"]).with_distinct(
                subset=[],
                keep="first").construct(feature_set_with_distinct_dataframe,
                                        spark_client,
                                        end_date="2020-01-10")
コード例 #9
0
    def test_construct_without_window(
        self,
        feature_set_dataframe,
        target_df_without_window,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    dtype=DataType.DOUBLE,
                    transformation=AggregatedTransform(
                        functions=[Function(F.avg, DataType.DOUBLE)]),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    dtype=DataType.FLOAT,
                    transformation=AggregatedTransform(
                        functions=[Function(F.count, DataType.BIGINT)]),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(from_column="fixed_ts"),
        )

        # act
        output_df = feature_set.construct(feature_set_dataframe,
                                          client=spark_client)

        # assert
        assert_dataframe_equality(output_df, target_df_without_window)
コード例 #10
0
 def test_unsupported_aggregation(self, feature_set_dataframe):
     with pytest.raises(TypeError):
         Feature(
             name="feature1",
             description="unit test",
             transformation=AggregatedTransform(
                 functions=[Function("median", DataType.DOUBLE)]),
         )
コード例 #11
0
 def test_blank_aggregation(self, feature_set_dataframe):
     with pytest.raises(ValueError):
         Feature(
             name="feature1",
             description="unit test",
             transformation=AggregatedTransform(
                 functions=[Function(func="", data_type="")]),
         )
コード例 #12
0
 def __init__(self):
     super(UserChargebacksPipeline, self).__init__(
         source=Source(
             readers=[
                 FileReader(
                     id="chargeback_events",
                     path="data/order_events/input.csv",
                     format="csv",
                     format_options={"header": True},
                 )
             ],
             query=("""
                 select
                     cpf,
                     timestamp(chargeback_timestamp) as timestamp,
                     order_id
                 from
                     chargeback_events
                 where
                     chargeback_timestamp is not null
                 """),
         ),
         feature_set=AggregatedFeatureSet(
             name="user_chargebacks",
             entity="user",
             description="Aggregates the total of chargebacks from users in "
             "different time windows.",
             keys=[
                 KeyFeature(
                     name="cpf",
                     description="User unique identifier, entity key.",
                     dtype=DataType.STRING,
                 )
             ],
             timestamp=TimestampFeature(),
             features=[
                 Feature(
                     name="cpf_chargebacks",
                     description=
                     "Total of chargebacks registered on user's CPF",
                     transformation=AggregatedTransform(functions=[
                         Function(functions.count, DataType.INTEGER)
                     ]),
                     from_column="order_id",
                 ),
             ],
         ).with_windows(
             definitions=["3 days", "7 days", "30 days"]).add_post_hook(
                 ZeroFillHook()),
         sink=Sink(writers=[
             LocalHistoricalFSWriter(),
             OnlineFeatureStoreWriter(
                 interval_mode=True,
                 check_schema_hook=NotCheckSchemaHook(),
                 debug_mode=True,
             ),
         ]),
     )
コード例 #13
0
    def test_run_agg_with_end_date(self, spark_session):
        test_pipeline = FeatureSetPipeline(
            spark_client=SparkClient(),
            source=Mock(
                spec=Source,
                readers=[
                    TableReader(
                        id="source_a",
                        database="db",
                        table="table",
                    )
                ],
                query="select * from source_a",
            ),
            feature_set=Mock(
                spec=AggregatedFeatureSet,
                name="feature_set",
                entity="entity",
                description="description",
                keys=[
                    KeyFeature(
                        name="user_id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(from_column="ts"),
                features=[
                    Feature(
                        name="listing_page_viewed__rent_per_month",
                        description="Average of something.",
                        transformation=AggregatedTransform(functions=[
                            Function(functions.avg, DataType.FLOAT),
                            Function(functions.stddev_pop, DataType.FLOAT),
                        ], ),
                    ),
                ],
            ),
            sink=Mock(
                spec=Sink,
                writers=[HistoricalFeatureStoreWriter(db_config=None)],
            ),
        )

        # feature_set need to return a real df for streaming validation
        sample_df = spark_session.createDataFrame([{
            "a": "x",
            "b": "y",
            "c": "3"
        }])
        test_pipeline.feature_set.construct.return_value = sample_df

        test_pipeline.run(end_date="2016-04-18")

        test_pipeline.source.construct.assert_called_once()
        test_pipeline.feature_set.construct.assert_called_once()
        test_pipeline.sink.flush.assert_called_once()
        test_pipeline.sink.validate.assert_called_once()
コード例 #14
0
    def test_agg_feature_set_with_window(self, key_id, timestamp_c, dataframe,
                                         rolling_windows_agg_dataframe):
        spark_client = SparkClient()

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="unit test",
                    transformation=AggregatedTransform(
                        functions=[Function(functions.avg, DataType.FLOAT)]),
                ),
                Feature(
                    name="feature2",
                    description="unit test",
                    transformation=AggregatedTransform(
                        functions=[Function(functions.avg, DataType.FLOAT)]),
                ),
            ],
            keys=[key_id],
            timestamp=timestamp_c,
        ).with_windows(definitions=["1 week"])

        # raises without end date
        with pytest.raises(ValueError):
            _ = fs.construct(dataframe, spark_client)

        # filters with date smaller then mocked max
        output_df = fs.construct(dataframe,
                                 spark_client,
                                 end_date="2016-04-17")
        assert output_df.count() < rolling_windows_agg_dataframe.count()
        output_df = fs.construct(dataframe,
                                 spark_client,
                                 end_date="2016-05-01")
        assert_dataframe_equality(output_df, rolling_windows_agg_dataframe)
コード例 #15
0
    def test_feature_transform(self, feature_set_dataframe, target_df_agg):
        test_feature = Feature(
            name="feature1",
            description="unit test",
            transformation=AggregatedTransform(functions=[
                Function(functions.avg, DataType.DOUBLE),
                Function(functions.stddev_pop, DataType.DOUBLE),
            ]),
        )

        # aggregated feature transform won't run transformations
        # and depends on the feature set
        with pytest.raises(NotImplementedError):
            _ = test_feature.transform(feature_set_dataframe)
コード例 #16
0
 def test_anonymous_function(self):
     with pytest.raises(
             AttributeError,
             match=
             "Anonymous functions are not supported on AggregatedTransform.",
     ):
         Feature(
             name="feature1",
             description="unit test",
             transformation=AggregatedTransform(functions=[
                 Function(func=partial(functions.count),
                          data_type=DataType.INTEGER)
             ]),
         ).get_output_columns()
コード例 #17
0
    def test_output_columns(self):
        test_feature = Feature(
            name="feature1",
            description="unit test",
            transformation=AggregatedTransform(functions=[
                Function(functions.avg, DataType.DOUBLE),
                Function(functions.stddev_pop, DataType.DOUBLE),
            ]),
        )

        df_columns = test_feature.get_output_columns()

        assert all([
            a == b for a, b in zip(
                df_columns,
                ["feature1__avg", "feature1__stddev_pop"],
            )
        ])
コード例 #18
0
 def test_feature_set_with_invalid_feature(self, key_id, timestamp_c,
                                           dataframe):
     spark_client = SparkClient()
     with pytest.raises(ValueError):
         FeatureSet(
             name="name",
             entity="entity",
             description="description",
             features=[
                 Feature(
                     name="feature1",
                     description="test",
                     transformation=AggregatedTransform(
                         functions=[Function(F.avg, DataType.FLOAT)]),
                 ),
             ],
             keys=[key_id],
             timestamp=timestamp_c,
         ).construct(dataframe, spark_client)
コード例 #19
0
    def test_construct_with_pivot(
        self,
        feature_set_df_pivot,
        target_df_pivot_agg,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature",
                    description="unit test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.FLOAT),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                    from_column="feature1",
                )
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(from_column="fixed_ts"),
        ).with_pivot("pivot_col", ["S", "N"])

        # act
        output_df = feature_set.construct(feature_set_df_pivot,
                                          client=spark_client)

        # assert
        assert_dataframe_equality(output_df, target_df_pivot_agg)
コード例 #20
0
ファイル: conftest.py プロジェクト: quintoandar/butterfree
def feature_set_incremental():
    key_features = [
        KeyFeature(name="id", description="Description", dtype=DataType.INTEGER)
    ]
    ts_feature = TimestampFeature(from_column=TIMESTAMP_COLUMN)
    features = [
        Feature(
            name="feature",
            description="test",
            transformation=AggregatedTransform(
                functions=[Function(functions.sum, DataType.INTEGER)]
            ),
        ),
    ]
    return AggregatedFeatureSet(
        "feature_set",
        "entity",
        "description",
        keys=key_features,
        timestamp=ts_feature,
        features=features,
    )
コード例 #21
0
    def test_construct_rolling_windows_without_end_date(
        self, feature_set_dataframe, rolling_windows_output_feature_set_dataframe
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(
                        functions=[
                            Function(F.avg, DataType.DOUBLE),
                            Function(F.stddev_pop, DataType.DOUBLE),
                        ],
                    ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 day", "1 week"],)

        # act & assert
        with pytest.raises(ValueError):
            _ = feature_set.construct(feature_set_dataframe, client=spark_client)
コード例 #22
0
    def test_feature_transform_with_data_type_array(self, spark_context,
                                                    spark_session):
        # arrange
        input_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 20
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 30
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10
            },
        ]
        target_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature__collect_set": [30.0, 20.0, 10.0],
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature__collect_set": [10.0],
            },
        ]
        input_df = create_df_from_collection(
            input_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))
        target_df = create_df_from_collection(
            target_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            keys=[
                KeyFeature(name="id",
                           description="test",
                           dtype=DataType.INTEGER)
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="feature",
                    description="aggregations with ",
                    dtype=DataType.BIGINT,
                    transformation=AggregatedTransform(functions=[
                        Function(functions.collect_set, DataType.ARRAY_FLOAT),
                    ], ),
                    from_column="feature",
                ),
            ],
        )

        # act
        output_df = fs.construct(input_df, SparkClient())

        # assert
        assert_dataframe_equality(target_df, output_df)
コード例 #23
0
    def test_feature_transform_with_filter_expression(self, spark_context,
                                                      spark_session):
        # arrange
        input_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10,
                "type": "a",
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 20,
                "type": "a",
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 30,
                "type": "b",
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10,
                "type": "a",
            },
        ]
        target_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature_only_type_a__avg": 15.0,
                "feature_only_type_a__min": 10,
                "feature_only_type_a__max": 20,
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature_only_type_a__avg": 10.0,
                "feature_only_type_a__min": 10,
                "feature_only_type_a__max": 10,
            },
        ]
        input_df = create_df_from_collection(
            input_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))
        target_df = create_df_from_collection(
            target_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            keys=[
                KeyFeature(name="id",
                           description="test",
                           dtype=DataType.INTEGER)
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="feature_only_type_a",
                    description="aggregations only when type = a",
                    dtype=DataType.BIGINT,
                    transformation=AggregatedTransform(
                        functions=[
                            Function(functions.avg, DataType.FLOAT),
                            Function(functions.min, DataType.FLOAT),
                            Function(functions.max, DataType.FLOAT),
                        ],
                        filter_expression="type = 'a'",
                    ),
                    from_column="feature",
                ),
            ],
        )

        # act
        output_df = fs.construct(input_df, SparkClient())

        # assert
        assert_dataframe_equality(target_df, output_df)
コード例 #24
0
    def test_get_schema(self):
        expected_schema = [
            {
                "column_name": "id",
                "type": LongType(),
                "primary_key": True
            },
            {
                "column_name": "timestamp",
                "type": TimestampType(),
                "primary_key": False
            },
            {
                "column_name": "feature1__avg_over_1_week_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name": "feature1__avg_over_2_days_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_1_week_rolling_windows",
                "type": FloatType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_2_days_rolling_windows",
                "type": FloatType(),
                "primary_key": False,
            },
            {
                "column_name": "feature2__count_over_1_week_rolling_windows",
                "type": ArrayType(StringType(), True),
                "primary_key": False,
            },
            {
                "column_name": "feature2__count_over_2_days_rolling_windows",
                "type": ArrayType(StringType(), True),
                "primary_key": False,
            },
        ]

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(functions.avg, DataType.DOUBLE),
                        Function(functions.stddev_pop, DataType.FLOAT),
                    ], ),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(functions.count, DataType.ARRAY_STRING)
                    ]),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.BIGINT,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 week", "2 days"])

        schema = feature_set.get_schema()

        assert schema == expected_schema