コード例 #1
0
 def test_missing_in_row_dict_raise_valueerror(self):
     database = Database("whoah")
     database.register()
     dtype = [
         (numpy_string('a'), np.uint32),
         (numpy_string('b'), np.uint32),
         (numpy_string('row'), np.uint32),
         (numpy_string('col'), np.uint32),
         (numpy_string('values'), np.float32),
     ]
     array = np.array([
         (1, 2, MAX_INT_32, MAX_INT_32, 99),
         (1, 4, MAX_INT_32, MAX_INT_32, 99),
     ],
                      dtype=dtype)
     row_dict = {1: 0}
     col_dict = {2: 0}
     np.save(database.filepath_processed(), array, allow_pickle=False)
     with self.assertRaises(ValueError):
         MatrixBuilder.build([database.filepath_processed()],
                             "values",
                             "a",
                             "row",
                             "b",
                             "col",
                             row_dict,
                             col_dict,
                             drop_missing=False)
コード例 #2
0
 def test_base_class(self):
     database = DatabaseChooser("a database")
     self.assertEqual(database._metadata, databases)
     self.assertEqual(
         [x[0] for x in database.dtype_fields],
         [numpy_string(x) for x in ('input', 'output', 'row', 'col', 'type')]
     )
コード例 #3
0
 def test_multiple_values_same_exchange(self):
     """Values for same (row, col) should add together"""
     a = np.zeros((2, ),
                  dtype=[(numpy_string('values'), np.float64),
                         (numpy_string('rows'), np.uint32),
                         (numpy_string('cols'), np.uint32)])
     a[0] = (9, 1, 1)
     a[1] = (33, 1, 1)
     r = [0, 0, 0]  # Just need right length
     matrix = MatrixBuilder.build_matrix(array=a,
                                         row_dict=r,
                                         col_dict=r,
                                         row_index_label='rows',
                                         col_index_label='cols',
                                         data_label='values')
     answer = np.array(((0, 0, 0), (0, 42, 0), (0, 0, 0)))
     self.assertTrue(np.allclose(answer, matrix.toarray()))
コード例 #4
0
    class PDS(ProcessedDataStore):
        _metadata = metadata
        dtype_fields = [
            (numpy_string('input'), np.uint32),
        ]

        def process_data(self, row):
            return (row['input'], ), row
コード例 #5
0
 def test_base_class(self):
     method = Method(("a", "method"))
     self.assertEqual(method.validator, ia_validator)
     self.assertEqual(method._metadata, methods)
     method.register()
     self.assertTrue(isinstance(method.metadata, dict))
     self.assertEqual(
         [x[0] for x in method.dtype_fields],
         [numpy_string(x) for x in ('flow', 'geo', 'row', 'col')])
コード例 #6
0
 def test_build_matrix(self):
     a = np.zeros((4, ),
                  dtype=[(numpy_string('values'), np.float64),
                         (numpy_string('rows'), np.uint32),
                         (numpy_string('cols'), np.uint32)])
     a[0] = (4.2, 0, 2)
     a[1] = (6.6, 1, 1)
     a[2] = (1.3, 2, 1)
     a[3] = (10, 2, 2)
     r = [0, 0, 0]  # Just need right length
     matrix = MatrixBuilder.build_matrix(array=a,
                                         row_dict=r,
                                         col_dict=r,
                                         row_index_label='rows',
                                         col_index_label='cols',
                                         data_label='values')
     answer = np.array(((0, 0, 4.2), (0, 6.6, 0), (0, 1.3, 10)))
     self.assertTrue(np.allclose(answer, matrix.toarray()))
コード例 #7
0
class Loading(ProcessedDataStore):
    """"""

    _metadata = loadings
    validator = loading_validator
    dtype_fields = [(numpy_string("geo"), np.uint32),
                    (numpy_string("row"), np.uint32)]

    def add_mappings(self, data):
        """In theory, this shouldn't do anything, as all spatial units should be in defined by the method."""
        geomapping.add({obj[1] for obj in data})

    def process_data(self, row):
        return (geomapping[row[1]], MAX_INT_32), row[0]

    @property
    def filename(self):
        return super(Loading, self).filename + ".loading"

    def write_to_map(self, method, flow, geocollection=None):
        map_obj = get_pandarus_map(method, geocollection)
        data = {x[1][1]: x[0] for x in self.load()}
        if map_obj.raster:
            self._write_raster_loadings_to_map(map_obj, data)
        else:
            self._write_vector_loadings_to_map(map_obj, data)

    def _write_raster_loadings_to_map(self, map_obj, data):
        NODATA = -9999.0
        filepath = os.path.join(projects.output_dir, self.filename + ".tiff")

        array = np.zeros(map_obj.file.array().shape) + NODATA
        for obj in map_obj:
            if obj["label"] in data:
                array[obj["row"], obj["col"]] = data[obj["label"]]

        map_obj.file.write_modified_array(filepath, array, nodata=NODATA)
        return filepath

    def _write_vector_loadings_to_map(self, map_obj, data):
        raise NotImplementedError
コード例 #8
0
 def test_build_one_d_drop_missing(self):
     database = Database("ghost")
     database.register()
     dtype = [
         (numpy_string('a'), np.uint32),
         (numpy_string('row'), np.uint32),
         (numpy_string('values'), np.float32),
     ]
     array = np.array([
         (1, MAX_INT_32, 99),
         (2, MAX_INT_32, 99),
         (3, MAX_INT_32, 99),
     ],
                      dtype=dtype)
     row_dict = {1: 0, 2: 1}
     np.save(database.filepath_processed(), array, allow_pickle=False)
     values = MatrixBuilder.build([database.filepath_processed()],
                                  "values",
                                  "a",
                                  "row",
                                  row_dict=row_dict,
                                  one_d=True)[0]
     self.assertEqual(values.shape, (2, ))
コード例 #9
0
 def test_build_one_d(self):
     database = Database("sour")
     database.register()
     dtype = [
         (numpy_string('a'), np.uint32),
         (numpy_string('row'), np.uint32),
         (numpy_string('values'), np.float32),
     ]
     array = np.array([
         (1, MAX_INT_32, 99),
         (2, MAX_INT_32, 100),
     ],
                      dtype=dtype)
     row_dict = {1: 0, 2: 1}
     np.save(database.filepath_processed(), array, allow_pickle=False)
     matrix = MatrixBuilder.build([database.filepath_processed()],
                                  "values",
                                  "a",
                                  "row",
                                  row_dict=row_dict,
                                  one_d=True)[3]
     self.assertTrue(
         np.allclose(matrix.toarray(), np.array(((99, 0), (0, 100)))))
コード例 #10
0
 def test_build_drop_missing(self):
     database = Database("boo")
     database.register()
     dtype = [
         (numpy_string('a'), np.uint32),
         (numpy_string('b'), np.uint32),
         (numpy_string('row'), np.uint32),
         (numpy_string('col'), np.uint32),
         (numpy_string('values'), np.float32),
     ]
     array = np.array([
         (1, 2, MAX_INT_32, MAX_INT_32, 99),
         (3, 4, MAX_INT_32, MAX_INT_32, 99),
         (3, 2, MAX_INT_32, MAX_INT_32, 99),
         (5, 6, MAX_INT_32, MAX_INT_32, 99),
     ],
                      dtype=dtype)
     row_dict = {1: 0, 3: 1}
     col_dict = {2: 0, 6: 1}
     np.save(database.filepath_processed(), array, allow_pickle=False)
     values = MatrixBuilder.build([database.filepath_processed()], "values",
                                  "a", "row", "b", "col", row_dict,
                                  col_dict)[0]
     self.assertEqual(values.shape, (2, ))
コード例 #11
0
 def test_base_class(self):
     norm = Normalization(("foo", ))
     self.assertEqual(norm.validator, normalization_validator)
     self.assertEqual(norm._metadata, normalizations)
     self.assertEqual([x[0] for x in norm.dtype_fields],
                      [numpy_string(x) for x in ('flow', 'index')])