コード例 #1
0
 def test_match_subcategories_makes_copies(self):
     """Should copy data instead of creating references, so that there are different amounts for different methods."""
     self.maxDiff = None
     background = [
         {
             "categories": ("air", "non-urban air or from high stacks"),
             "code": "first",
             "database": "b",
             "exchanges": [],
             "name": "Boron trifluoride",
             "type": "emission",
             "unit": "kilogram",
         }
     ]
     db = Database("b")
     db.register()
     db.write({(obj["database"], obj["code"]): obj for obj in background})
     data = [
         {
             "name": "Some LCIA method",
             "exchanges": [
                 {
                     "name": "Boron trifluoride",
                     "categories": ("air",),
                     "unit": "kilogram",
                     "amount": 1,
                     "input": ("foo", "bar"),
                 }
             ],
         },
         {
             "name": "Another LCIA method",
             "exchanges": [
                 {
                     "name": "Boron trifluoride",
                     "categories": ("air",),
                     "unit": "kilogram",
                     "amount": 2,
                     "input": ("foo", "bar"),
                 }
             ],
         },
     ]
     result = match_subcategories(data, "b")
     for cf in result[0]["exchanges"]:
         self.assertEqual(cf["amount"], 1)
     for cf in result[1]["exchanges"]:
         self.assertEqual(cf["amount"], 2)
コード例 #2
0
 def test_match_subcategories_makes_copies(self):
     """Should copy data instead of creating references, so that there are different amounts for different methods."""
     self.maxDiff = None
     background = [{
         'categories': ('air', 'non-urban air or from high stacks'),
         'code':
         'first',
         'database':
         'b',
         'exchanges': [],
         'name':
         'Boron trifluoride',
         'type':
         'emission',
         'unit':
         'kilogram'
     }]
     db = Database('b')
     db.register()
     db.write({(obj['database'], obj['code']): obj for obj in background})
     data = [{
         'name':
         'Some LCIA method',
         'exchanges': [{
             'name': 'Boron trifluoride',
             'categories': ('air', ),
             'unit': 'kilogram',
             'amount': 1,
             'input': ('foo', 'bar'),
         }]
     }, {
         'name':
         'Another LCIA method',
         'exchanges': [{
             'name': 'Boron trifluoride',
             'categories': ('air', ),
             'unit': 'kilogram',
             'amount': 2,
             'input': ('foo', 'bar'),
         }]
     }]
     result = match_subcategories(data, 'b')
     for cf in result[0]['exchanges']:
         self.assertEqual(cf['amount'], 1)
     for cf in result[1]['exchanges']:
         self.assertEqual(cf['amount'], 2)
コード例 #3
0
    def test_match_subcategories(self):
        self.maxDiff = None
        background = [
            {
                "categories": ("air", "non-urban air or from high stacks"),
                "code": "first",
                "database": "b",
                "exchanges": [],
                "name": "Boron trifluoride",
                "type": "emission",
                "unit": "kilogram",
            },
            {
                "categories": ("air", "low population density, long-term"),
                "code": "second",
                "database": "b",
                "exchanges": [],
                "name": "Boron trifluoride",
                "type": "emission",
                "unit": "kilogram",
            },
            {
                "categories": ("air", "lower stratosphere + upper troposphere"),
                "code": "third",
                "database": "b",
                "exchanges": [],
                "name": "Boron trifluoride",
                "type": "emission",
                "unit": "kilogram",
            },
            {  # Skip - root category
                "categories": ("air",),
                "code": "fourth",
                "database": "b",
                "exchanges": [],
                "name": "Boron trifluoride",
                "type": "emission",
                "unit": "kilogram",
            },
            {  # Should be skipped - wrong type
                "categories": ("air", "skip me"),
                "code": "Bill. My friends just call me Bill.",
                "database": "b",
                "exchanges": [],
                "name": "Boron trifluoride",
                "type": "something else",
                "unit": "kilogram",
            },
        ]
        db = Database("b")
        db.register()
        db.write({(obj["database"], obj["code"]): obj for obj in background})

        data = [
            {
                "name": "Some LCIA method",
                "exchanges": [
                    {
                        "name": "Boron trifluoride",
                        "categories": ("air",),
                        "unit": "kilogram",
                        # Only for CFs - no need for biosphere filter
                        # 'type': 'biosphere',
                        "amount": 1,
                    },
                    {
                        "name": "Boron trifluoride",
                        "categories": ("air", "lower stratosphere + upper troposphere"),
                        "unit": "kilogram",
                        "amount": 0,
                    },
                ],
            }
        ]
        expected = [
            {
                "name": "Some LCIA method",
                "exchanges": [
                    {
                        "name": "Boron trifluoride",
                        "categories": ("air",),
                        "unit": "kilogram",
                        "amount": 1,
                    },
                    {  # Not linked - already has subcategories
                        "categories": ("air", "lower stratosphere + upper troposphere"),
                        "name": "Boron trifluoride",
                        "unit": "kilogram",
                        "amount": 0,
                    },
                    {
                        "categories": ("air", "low population density, long-term"),
                        "database": "b",
                        "name": "Boron trifluoride",
                        "unit": "kilogram",
                        "input": ("b", "second"),
                        "amount": 1,
                    },
                    {
                        "amount": 1,
                        "categories": ("air", "non-urban air or from high stacks"),
                        "database": "b",
                        "input": ("b", "first"),
                        "name": "Boron trifluoride",
                        "unit": "kilogram",
                    },
                ],
            }
        ]
        answer = match_subcategories(data, "b", remove=False)
        self.assertEqual(expected, answer)
コード例 #4
0
    def test_match_subcategories(self):
        self.maxDiff = None
        background = [
            {
                'categories': ('air', 'non-urban air or from high stacks'),
                'code': 'first',
                'database': 'b',
                'exchanges': [],
                'name': 'Boron trifluoride',
                'type': 'emission',
                'unit': 'kilogram'
            },
            {
                'categories': ('air', 'low population density, long-term'),
                'code': 'second',
                'database': 'b',
                'exchanges': [],
                'name': 'Boron trifluoride',
                'type': 'emission',
                'unit': 'kilogram'
            },
            {
                'categories':
                ('air', 'lower stratosphere + upper troposphere'),
                'code': 'third',
                'database': 'b',
                'exchanges': [],
                'name': 'Boron trifluoride',
                'type': 'emission',
                'unit': 'kilogram'
            },
            {  # Skip - root category
                'categories': ('air', ),
                'code': 'fourth',
                'database': 'b',
                'exchanges': [],
                'name': 'Boron trifluoride',
                'type': 'emission',
                'unit': 'kilogram'
            },
            {  # Should be skipped - wrong type
                'categories': ('air', 'skip me'),
                'code': 'Bill. My friends just call me Bill.',
                'database': 'b',
                'exchanges': [],
                'name': 'Boron trifluoride',
                'type': 'something else',
                'unit': 'kilogram'
            }
        ]
        db = Database('b')
        db.register()
        db.write({(obj['database'], obj['code']): obj for obj in background})

        data = [{
            'name':
            'Some LCIA method',
            'exchanges': [
                {
                    'name': 'Boron trifluoride',
                    'categories': ('air', ),
                    'unit': 'kilogram',
                    # Only for CFs - no need for biosphere filter
                    # 'type': 'biosphere',
                    'amount': 1,
                },
                {
                    'name': 'Boron trifluoride',
                    'categories':
                    ('air', 'lower stratosphere + upper troposphere'),
                    'unit': 'kilogram',
                    'amount': 0,
                }
            ]
        }]
        expected = [{
            'name': 'Some LCIA method',
            'exchanges': [{
                'name': 'Boron trifluoride',
                'categories': ('air',),
                'unit': 'kilogram',
                'amount': 1,
            }, {  # Not linked - already has subcategories
                'categories': ('air',
                               'lower stratosphere + upper troposphere'),
                'name': 'Boron trifluoride',
                'unit': 'kilogram',
                'amount': 0,
            }, {
                'categories': ('air',
                               'low population density, long-term'),
                'database': 'b',
                'name': 'Boron trifluoride',
                'unit': 'kilogram',
                'input': ('b', 'second'),
                'amount': 1,
            }, {
                'amount': 1,
                'categories': ('air',
                               'non-urban air or from high stacks'),
                'database': 'b',
                'input': ('b', 'first'),
                'name': 'Boron trifluoride',
                'unit': 'kilogram'
            }]
        }]
        answer = match_subcategories(data, 'b', remove=False)
        self.assertEqual(expected, answer)