コード例 #1
0
    def test3(self):
        import sys
        data1 =  np.array([[ 0, 0, 0, 0, 0, 0, 0],
                           [ 0, 0, 0, 0, 0, 0, 0],
                           [ 0, 1, 1, 1, 1, 1, 0],
                           [ 0, 0, 0, 0, 0, 0, 0]])
        bl1 = np.zeros(data1.shape,np.intc)
        np1 = connectedpixels.connectedpixels(data1,bl1,0.1)
        data2 =  np.array([[ 0, 0, 0, 0, 0, 0, 0],
                           [ 0, 2, 0, 0, 0, 2, 0],
                           [ 0, 2, 0, 0, 0, 2, 0],
                           [ 0, 2, 0, 0, 0, 2, 0]])
        bl2 = np.zeros(data2.shape,np.intc)
        np2 = connectedpixels.connectedpixels(data2,bl2,0.1)
        r1 = connectedpixels.blobproperties(data1, bl1, np1)
        r2 = connectedpixels.blobproperties(data2, bl2, np2)

        connectedpixels.bloboverlaps(bl1,np1,r1,
                                     bl2,np2,r2, verbose=0)

        # check which peaks are zeroed
        self.assertAlmostEqual(np.sum(r1[0]),0.,6)
        # Results pile up all in r2[0]
        self.assertAlmostEqual(np.sum(r2[1]),0.,6)
        from ImageD11.connectedpixels import s_1, s_I, s_I2, \
            s_fI, s_ffI, s_sI, s_ssI, s_sfI, \
            bb_mn_f, bb_mn_s, bb_mx_f, bb_mx_s,\
            mx_I, mx_I_f, mx_I_s
        self.assertAlmostEqual(r2[0,s_1],11, 6)
        self.assertAlmostEqual(r2[0,s_I],17, 6)
コード例 #2
0
 def test_2_shapes(self):
     for t in [np.uint8, np.int8, np.uint16, np.int16,
               np.int32, np.uint32, np.float32, np.float]:
         data = np.array( [[ 1, 0, 1, 0, 2, 0, 2],
                          [ 1, 0, 1, 0, 2, 0, 2],
                          [ 1, 0, 1, 0, 0, 2, 0],
                          [ 1, 1, 1, 0, 2, 0, 2]],t)
         bl = np.zeros(data.shape,np.int32)
         connectedpixels.connectedpixels(
             data,
             bl,
             0.1)  # threshold
         err = np.sum(np.ravel(data-bl))
         self.assertEqual(err, 0)
コード例 #3
0
 def skip_test_2_transpose(self):
     for t in [np.uint8, np.int8, np.uint16, np.int16,
               np.int32, np.uint32, np.float32, np.float]:
         data = np.array( [[ 1, 0, 1, 0, 2, 0, 2],
                          [ 1, 0, 1, 0, 2, 0, 2],
                          [ 1, 0, 1, 0, 0, 2, 0],
                          [ 1, 1, 1, 0, 2, 0, 2]],t)
         bl = np.zeros(data.shape,np.int32)
         self.assertRaises(ValueError,
                           connectedpixels.connectedpixels,
                           *(np.transpose(data),bl,0.1))
         connectedpixels.connectedpixels(
             np.transpose(data),np.transpose(bl),0.1)
         err = np.sum(np.ravel(data-bl))
         self.assertEqual(err, 0)
コード例 #4
0
 def test_find_max(self):
     for t in [np.uint8, np.int8, np.uint16, np.int16,
               np.int32, np.uint32, np.float32, np.float]:
         data = np.array( [[ 1, 0, 1],
                          [ 1, 0, 1],
                          [ 1, 8, 1],
                          [ 1, 1, 1]],t)
         bl = np.zeros(data.shape,np.int32)
         npx = connectedpixels.connectedpixels(
             data,bl,0.1)
         self.assertEqual(npx,1)
         err = np.sum(np.ravel(data-bl))
         self.assertEqual(err, 7) # 8-1
         res = connectedpixels.blobproperties(data,
                                              bl,
                                              npx,
                                              omega=22.)
         from ImageD11.connectedpixels import s_1, s_I, s_I2, \
             s_fI, s_ffI, s_sI, s_ssI, s_sfI, \
             bb_mn_f, bb_mn_s, bb_mx_f, bb_mx_s,\
             bb_mn_o, bb_mx_o, \
             mx_I, mx_I_f, mx_I_s, mx_I_o
         #            print res,res.shape
         self.assertAlmostEqual(res[0][s_1],10)
         self.assertAlmostEqual(res[0][mx_I],8)
         self.assertAlmostEqual(res[0][mx_I_f],1)
         self.assertAlmostEqual(res[0][mx_I_s],2)
         self.assertAlmostEqual(res[0][mx_I_o],22)
コード例 #5
0
    def test1(self):
        import sys
        data1 =  np.array([[ 1, 0, 1, 0, 0, 0, 0],
                          [ 1, 0, 1, 0, 0, 0, 0],
                          [ 1, 0, 1, 1, 0, 0, 0],
                          [ 1, 1, 1, 0, 0, 0, 0]])
        bl1 = np.zeros(data1.shape, np.intc)
        np1 = connectedpixels.connectedpixels(data1,bl1,0.1)
        data2 =  np.array([[ 0, 0, 0, 0, 2, 0, 2],
                          [ 0, 0, 0, 0, 2, 0, 2],
                          [ 0, 0, 0, 2, 0, 2, 0],
                          [ 0, 0, 0, 0, 2, 0, 2]])
        bl2 = np.zeros(data2.shape,np.intc)
        np2 = connectedpixels.connectedpixels(data2,bl2,0.1)
        r1 = connectedpixels.blobproperties(data1, bl1, np1, omega=-10.0)
        r2 = connectedpixels.blobproperties(data2, bl2, np2, omega=10.0)

        connectedpixels.bloboverlaps(bl1,np1,r1,
                                     bl2,np2,r2, verbose=0)
        # check r1 is zeroed
        err = np.sum(np.ravel(r1))
        self.assertAlmostEqual(err,0.,6)
        from ImageD11.connectedpixels import s_1, s_I, s_I2, \
            s_fI, s_ffI, s_sI, s_ssI, s_sfI, \
            bb_mn_f, bb_mn_s, bb_mx_f, bb_mx_s,\
            bb_mn_o, bb_mx_o,\
            mx_I, mx_I_f, mx_I_s
        # check total pixels
        self.assertAlmostEqual(r2[0,s_1], 18.0, 6)
        self.assertAlmostEqual(r2[0,s_I], 26.0, 6)
        self.assertAlmostEqual(r2[0,bb_mn_f], 0.0, 6)
        self.assertAlmostEqual(r2[0,bb_mx_f], 6.0, 6)
        self.assertAlmostEqual(r2[0,bb_mn_s], 0.0, 6)
        self.assertAlmostEqual(r2[0,bb_mx_s], 3.0, 6)
        self.assertAlmostEqual(r2[0,bb_mn_o], -10.0, 6)
        self.assertAlmostEqual(r2[0,bb_mx_o],  10.0, 6)
コード例 #6
0
            assert np.allclose(drlnew, drlold), (drlold, drlnew, drlv2new)
        assert nnew == nold, (nnew, nold)
        print nnew, nold

print "Seems that score is OK"
print "Seems that score_and_refine is OK"
print "Seems that score_and_assign is OK"
print "Seems that refine_assigned is OK"

print connectedpixels.s_1

BTYPE = np.intc

a = np.arange(3 * 4).reshape(3, 4).astype(np.float32)
r = np.zeros(a.shape, BTYPE)
npk = connectedpixels.connectedpixels(a, r, 1.01, 1)
print a
print "Pks", npk
print r
# npk = connectedpixels.connectedpixels( a.astype(float), r, 1, 1)
npk = connectedpixels.connectedpixels(a, r, 1.01, 1, 0)
print "Pks", npk
print r

a = np.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
              [0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
              [0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
              [0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0],
              [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0],
              [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1],
              [0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
コード例 #7
0
 def skip_test_2_transpose(self):
     for t in [np.uint8, np.int8, np.uint16, np.int16,
               np.int32, np.uint32, np.float32, np.float]:
         data = np.array( [[ 1, 0, 1, 0, 2, 0, 2],
                          [ 1, 0, 1, 0, 2, 0, 2],
                          [ 1, 0, 1, 0, 0, 2, 0],
                          [ 1, 1, 1, 0, 2, 0, 2]],t)
         bl = np.zeros(data.shape,np.int32)
         self.assertRaises(ValueError,
                           connectedpixels.connectedpixels,
                           *(np.transpose(data),bl,0.1))
         npx = connectedpixels.connectedpixels(
             np.transpose(data),np.transpose(bl),0.1)
         self.assertEqual(npx,2)
         err = np.sum(np.ravel(data-bl))
         self.assertEqual(err, 0)
         res = connectedpixels.blobproperties(data, bl, npx)
         from ImageD11.connectedpixels import s_1, s_I, s_I2, \
             s_fI, s_ffI, s_sI, s_ssI, s_sfI, \
             bb_mn_f, bb_mn_s, bb_mx_f, bb_mx_s,\
             bb_mn_o, bb_mx_o, \
             mx_I, mx_I_f, mx_I_s
         #            print res,res.shape
         self.assertAlmostEqual(res[0][s_1],9)
         self.assertAlmostEqual(res[1][s_1],7)
         self.assertAlmostEqual(res[0][s_I],9)
         self.assertAlmostEqual(res[1][s_I],14)
         self.assertAlmostEqual(res[0][s_I2],9)
         self.assertAlmostEqual(res[1][s_I2],28)
         # [[ 1, 0, 1, 0, 2, 0, 2],     --> Fast
         #  [ 1, 0, 1, 0, 2, 0, 2],     |
         #  [ 1, 0, 1, 0, 0, 2, 0],     |
         #  [ 1, 1, 1, 0, 2, 0, 2]],t)  V Slow
         # f*I:
         # f= 0, 1, 2, 3, 4, 5, 6
         # [[ 0, 0, 2, 0, 8, 0, 12],     --> Fast
         #  [ 0, 0, 2, 0, 8, 0, 12],     |
         #  [ 0, 0, 2, 0, 0,10, 0 ],     |
         #  [ 0, 1, 2, 0, 8, 0, 12]],t)  V Slow
         #         =9     =70
         self.assertAlmostEqual(res[0][s_fI],9)
         self.assertAlmostEqual(res[1][s_fI],70)
         # s*I:
         # s=
         # 0[[ 0, 0, 0, 0, 0, 0, 0],     --> Fast
         # 1 [ 1, 0, 1, 0, 2, 0, 2],     |
         # 2 [ 2, 0, 2, 0, 0, 4, 0],     |
         # 3 [ 3, 3, 3, 0, 6, 0, 6]],t)  V Slow
         #         =15     =20
         self.assertAlmostEqual(res[0][s_sI],15)
         self.assertAlmostEqual(res[1][s_sI],20)
         # Bounding box
         self.assertAlmostEqual(res[0][bb_mn_f],0)
         self.assertAlmostEqual(res[1][bb_mn_f],4)
         self.assertAlmostEqual(res[0][bb_mx_f],2)
         self.assertAlmostEqual(res[1][bb_mx_f],6)
         self.assertAlmostEqual(res[0][bb_mn_s],0)
         self.assertAlmostEqual(res[1][bb_mn_s],0)
         self.assertAlmostEqual(res[0][bb_mx_s],3)
         self.assertAlmostEqual(res[1][bb_mx_s],3)
         self.assertAlmostEqual(res[1][bb_mn_o],0)
         self.assertAlmostEqual(res[0][bb_mx_o],0)