コード例 #1
0
def DAP_HandNet(net, train=True, data_layer="data", gt_label="label", \
           net_width=512, net_height=288):
    # BaseNet: Only contains conv1 & pool1
    # lr_basenet =0
    # use_sub_layers = ()# exmpty means only has conv1 and pooling
    # num_channels = ()
    # output_channels = (0, )
    # channel_scale = 4
    # add_strs = "_recon"
    # net = ResidualVariant_Base_A(net, data_layer=data_layer, use_sub_layers=use_sub_layers, num_channels=num_channels,
    #                              output_channels=output_channels, channel_scale=channel_scale, lr=lr_basenet, decay=lr_basenet,
    #                              add_strs=add_strs)
    # Base of ZhangM
    net = HandBase(net, data_layer=data_layer, use_bn=True)
    # make Loss & Detout for SSD2
    mbox_2_layers = SsdDetectorHeaders(net, \
          net_width=net_width, net_height=net_height, data_layer=data_layer, \
          from_layers=ssd_Param_2.get('feature_layers',[]), \
          num_classes=ssd_Param_2.get("num_classes",2), \
          boxsizes=ssd_Param_2.get("anchor_boxsizes", []), \
          aspect_ratios=ssd_Param_2.get("anchor_aspect_ratios",[]), \
          prior_variance = ssd_Param_2.get("anchor_prior_variance",[0.1,0.1,0.2,0.2]), \
          flip=ssd_Param_2.get("anchor_flip",True), \
          clip=ssd_Param_2.get("anchor_clip",True), \
          normalizations=ssd_Param_2.get("interlayers_normalizations",[]), \
          use_batchnorm=ssd_Param_2.get("interlayers_use_batchnorm",True), \
          inter_layer_channels=ssd_Param_2.get("interlayers_channels_kernels",[]), \
          use_focus_loss=ssd_Param_2.get("bboxloss_using_focus_loss",False), \
          use_dense_boxes=ssd_Param_2.get('bboxloss_use_dense_boxes',False), \
          stage=2)
    # make Loss or Detout for SSD1
    if train:
        loss_param = get_loss_param(normalization=ssd_Param_2.get(
            "bboxloss_normalization", P.Loss.VALID))
        mbox_2_layers.append(net[gt_label])
        use_dense_boxes = ssd_Param_2.get('bboxloss_use_dense_boxes', False)
        if use_dense_boxes:
            bboxloss_param = {
                'gt_labels':
                ssd_Param_2.get('gt_labels', []),
                'target_labels':
                ssd_Param_2.get('target_labels', []),
                'num_classes':
                ssd_Param_2.get("num_classes", 2),
                'alias_id':
                ssd_Param_2.get("alias_id", 0),
                'loc_loss_type':
                ssd_Param_2.get("bboxloss_loc_loss_type",
                                P.MultiBoxLoss.SMOOTH_L1),
                'conf_loss_type':
                ssd_Param_2.get("bboxloss_conf_loss_type",
                                P.MultiBoxLoss.LOGISTIC),
                'loc_weight':
                ssd_Param_2.get("bboxloss_loc_weight", 1),
                'conf_weight':
                ssd_Param_2.get("bboxloss_conf_weight", 1),
                'overlap_threshold':
                ssd_Param_2.get("bboxloss_overlap_threshold", 0.5),
                'neg_overlap':
                ssd_Param_2.get("bboxloss_neg_overlap", 0.5),
                'size_threshold':
                ssd_Param_2.get("bboxloss_size_threshold", 0.0001),
                'do_neg_mining':
                ssd_Param_2.get("bboxloss_do_neg_mining", True),
                'neg_pos_ratio':
                ssd_Param_2.get("bboxloss_neg_pos_ratio", 3),
                'using_focus_loss':
                ssd_Param_2.get("bboxloss_using_focus_loss", False),
                'gama':
                ssd_Param_2.get("bboxloss_focus_gama", 2),
                'use_difficult_gt':
                ssd_Param_2.get("bboxloss_use_difficult_gt", False),
                'code_type':
                ssd_Param_2.get("bboxloss_code_type", P.PriorBox.CENTER_SIZE),
                'use_prior_for_matching':
                True,
                'encode_variance_in_target':
                False,
                'flag_noperson':
                ssd_Param_2.get('flag_noperson', False),
                'size_threshold_max':
                ssd_Param_2.get("bboxloss_size_threshold_max", 2),
                'flag_showdebug':
                ssd_Param_2.get("flag_showdebug", False),
                'flag_forcematchallgt':
                ssd_Param_2.get("flag_forcematchallgt", False),
                'flag_areamaxcheckinmatch':
                ssd_Param_2.get("flag_areamaxcheckinmatch", False),
            }
            net["mbox_2_loss"] = L.DenseBBoxLoss(*mbox_2_layers, dense_bbox_loss_param=bboxloss_param, \
                                    loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                                    propagate_down=[True, True, False, False])
        else:
            bboxloss_param = {
                'gt_labels':
                ssd_Param_2.get('gt_labels', []),
                'target_labels':
                ssd_Param_2.get('target_labels', []),
                'num_classes':
                ssd_Param_2.get("num_classes", 2),
                'alias_id':
                ssd_Param_2.get("alias_id", 0),
                'loc_loss_type':
                ssd_Param_2.get("bboxloss_loc_loss_type",
                                P.MultiBoxLoss.SMOOTH_L1),
                'conf_loss_type':
                ssd_Param_2.get("bboxloss_conf_loss_type",
                                P.MultiBoxLoss.SOFTMAX),
                'loc_weight':
                ssd_Param_2.get("bboxloss_loc_weight", 1),
                'conf_weight':
                ssd_Param_2.get("bboxloss_conf_weight", 1),
                'overlap_threshold':
                ssd_Param_2.get("bboxloss_overlap_threshold", 0.5),
                'neg_overlap':
                ssd_Param_2.get("bboxloss_neg_overlap", 0.5),
                'size_threshold':
                ssd_Param_2.get("bboxloss_size_threshold", 0.0001),
                'do_neg_mining':
                ssd_Param_2.get("bboxloss_do_neg_mining", True),
                'neg_pos_ratio':
                ssd_Param_2.get("bboxloss_neg_pos_ratio", 3),
                'using_focus_loss':
                ssd_Param_2.get("bboxloss_using_focus_loss", False),
                'gama':
                ssd_Param_2.get("bboxloss_focus_gama", 2),
                'use_difficult_gt':
                ssd_Param_2.get("bboxloss_use_difficult_gt", False),
                'code_type':
                ssd_Param_2.get("bboxloss_code_type", P.PriorBox.CENTER_SIZE),
                'match_type':
                P.MultiBoxLoss.PER_PREDICTION,
                'share_location':
                True,
                'use_prior_for_matching':
                True,
                'background_label_id':
                0,
                'encode_variance_in_target':
                False,
                'map_object_to_agnostic':
                False,
            }
            net["mbox_2_loss"] = L.BBoxLoss(*mbox_2_layers, bbox_loss_param=bboxloss_param, \
                        loss_param=loss_param,include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                        propagate_down=[True, True, False, False])
    else:
        if ssd_Param_2.get("bboxloss_conf_loss_type",
                           P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.SOFTMAX:
            reshape_name = "mbox_2_conf_reshape"
            net[reshape_name] = L.Reshape(mbox_2_layers[1], \
                    shape=dict(dim=[0, -1, ssd_Param_2.get("num_classes",2)]))
            softmax_name = "mbox_2_conf_softmax"
            net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
            flatten_name = "mbox_2_conf_flatten"
            net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
            mbox_2_layers[1] = net[flatten_name]
        elif ssd_Param_2.get(
                "bboxloss_conf_loss_type",
                P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.LOGISTIC:
            sigmoid_name = "mbox_2_conf_sigmoid"
            net[sigmoid_name] = L.Sigmoid(mbox_2_layers[1])
            mbox_2_layers[1] = net[sigmoid_name]
        else:
            raise ValueError("Unknown conf loss type.")
        # Det-out param
        det_out_param = {
            'num_classes': ssd_Param_2.get("num_classes", 2),
            'target_labels': ssd_Param_2.get('detout_target_labels', []),
            'alias_id': ssd_Param_2.get("alias_id", 0),
            'conf_threshold': ssd_Param_2.get("detout_conf_threshold", 0.01),
            'nms_threshold': ssd_Param_2.get("detout_nms_threshold", 0.45),
            'size_threshold': ssd_Param_2.get("detout_size_threshold", 0.0001),
            'top_k': ssd_Param_2.get("detout_top_k", 30),
            'share_location': True,
            'code_type': P.PriorBox.CENTER_SIZE,
            'background_label_id': 0,
            'variance_encoded_in_target': False,
        }
        use_dense_boxes = ssd_Param_2.get('bboxloss_use_dense_boxes', False)
        if use_dense_boxes:
            net.detection_out_2 = L.DenseDetOut(*mbox_2_layers, \
               detection_output_param=det_out_param, \
               include=dict(phase=caffe_pb2.Phase.Value('TEST')))
        else:
            net.detection_out_2 = L.DetOut(*mbox_2_layers, \
               detection_output_param=det_out_param, \
               include=dict(phase=caffe_pb2.Phase.Value('TEST')))
    # EVAL in TEST MODE
    if not train:
        det_eval_param = {
            'gt_labels':
            eval_Param.get('eval_gt_labels', []),
            'num_classes':
            eval_Param.get("eval_num_classes", 2),
            'evaluate_difficult_gt':
            eval_Param.get("eval_difficult_gt", False),
            'boxsize_threshold':
            eval_Param.get("eval_boxsize_threshold",
                           [0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25]),
            'iou_threshold':
            eval_Param.get("eval_iou_threshold", [0.9, 0.75, 0.5]),
            'background_label_id':
            0,
        }
        net.det_accu = L.DetEval(net['detection_out_2'], net[gt_label], \
                   detection_evaluate_param=det_eval_param, \
                   include=dict(phase=caffe_pb2.Phase.Value('TEST')))
    return net
コード例 #2
0
ファイル: DAPNet.py プロジェクト: UrwLee/Remo_experience
def DAPNet(net, train=True, data_layer="data", gt_label="label", \
           net_width=512, net_height=288):
    # BaseNet
    use_sub_layers = (6, 7)
    num_channels = (144, 288)
    output_channels = (128, 0)
    channel_scale = 4
    add_strs = "_recon"
    net = ResidualVariant_Base_A(
        net,
        data_layer=data_layer,
        use_sub_layers=use_sub_layers,
        num_channels=num_channels,
        output_channels=output_channels,
        channel_scale=channel_scale,
        lr=0.1,
        decay=1,
        add_strs=add_strs,
    )
    # Add Conv6
    conv6_output = Conv6_Param.get('conv6_output', [])
    conv6_kernal_size = Conv6_Param.get('conv6_kernal_size', [])
    out_layer = "conv3_7_recon_relu"
    net = addconv6(net, from_layer=out_layer, use_bn=True, conv6_output=conv6_output, \
        conv6_kernal_size=conv6_kernal_size, pre_name="conv6",start_pool=True,lr_mult=1, decay_mult=1,n_group=1)
    # Concat FM1 & FM2 & FM3 for Detection
    featuremap1 = ["pool1_recon", "conv2_6_recon_relu"]
    tags = ["Down", "Ref"]
    down_methods = [["MaxPool"]]
    out_layer = "featuremap1"
    UnifiedMultiScaleLayers(net,
                            layers=featuremap1,
                            tags=tags,
                            unifiedlayer=out_layer,
                            dnsampleMethod=down_methods)
    # Concat FM2
    featuremap2 = ["conv2_6_recon_relu", "conv3_7_recon_relu"]
    tags = ["Down", "Ref"]
    down_methods = [["MaxPool"]]
    out_layer = "featuremap2"
    UnifiedMultiScaleLayers(net,
                            layers=featuremap2,
                            tags=tags,
                            unifiedlayer=out_layer,
                            dnsampleMethod=down_methods)
    # Concat FM3
    c6_layer = 'conv6_{}'.format(len(Conv6_Param['conv6_output']))
    featuremap3 = ["conv3_7_recon_relu", c6_layer]
    tags = ["Down", "Ref"]
    down_methods = [["MaxPool"]]
    out_layer = "featuremap3"
    UnifiedMultiScaleLayers(net,
                            layers=featuremap3,
                            tags=tags,
                            unifiedlayer=out_layer,
                            dnsampleMethod=down_methods)
    # Create SSD Header for SSD1
    mbox_1_layers = SsdDetectorHeaders(net, \
         net_width=net_width, net_height=net_height, data_layer=data_layer, \
         from_layers=ssd_Param_1.get('feature_layers',[]), \
         num_classes=ssd_Param_1.get("num_classes",2), \
         boxsizes=ssd_Param_1.get("anchor_boxsizes", []), \
         aspect_ratios=ssd_Param_1.get("anchor_aspect_ratios",[]), \
         prior_variance = ssd_Param_1.get("anchor_prior_variance",[0.1,0.1,0.2,0.2]), \
         flip=ssd_Param_1.get("anchor_flip",True), \
         clip=ssd_Param_1.get("anchor_clip",True), \
         normalizations=ssd_Param_1.get("interlayers_normalizations",[]), \
         use_batchnorm=ssd_Param_1.get("interlayers_use_batchnorm",True), \
         inter_layer_channels=ssd_Param_1.get("interlayers_channels_kernels",[]), \
         use_focus_loss=ssd_Param_1.get("bboxloss_using_focus_loss",False), \
         use_dense_boxes=ssd_Param_1.get('bboxloss_use_dense_boxes',False), \
         stage=1)
    # make Loss or Detout for SSD1
    if train:
        loss_param = get_loss_param(normalization=ssd_Param_1.get(
            "bboxloss_normalization", P.Loss.VALID))
        mbox_1_layers.append(net[gt_label])
        use_dense_boxes = ssd_Param_1.get('bboxloss_use_dense_boxes', False)
        if use_dense_boxes:
            bboxloss_param = {
                'gt_labels':
                ssd_Param_1.get('gt_labels', []),
                'target_labels':
                ssd_Param_1.get('target_labels', []),
                'num_classes':
                ssd_Param_1.get("num_classes", 2),
                'alias_id':
                ssd_Param_1.get("alias_id", 0),
                'loc_loss_type':
                ssd_Param_1.get("bboxloss_loc_loss_type",
                                P.MultiBoxLoss.SMOOTH_L1),
                'conf_loss_type':
                ssd_Param_1.get("bboxloss_conf_loss_type",
                                P.MultiBoxLoss.LOGISTIC),
                'loc_weight':
                ssd_Param_1.get("bboxloss_loc_weight", 1),
                'conf_weight':
                ssd_Param_1.get("bboxloss_conf_weight", 1),
                'overlap_threshold':
                ssd_Param_1.get("bboxloss_overlap_threshold", 0.5),
                'neg_overlap':
                ssd_Param_1.get("bboxloss_neg_overlap", 0.5),
                'size_threshold':
                ssd_Param_1.get("bboxloss_size_threshold", 0.0001),
                'do_neg_mining':
                ssd_Param_1.get("bboxloss_do_neg_mining", True),
                'neg_pos_ratio':
                ssd_Param_1.get("bboxloss_neg_pos_ratio", 3),
                'using_focus_loss':
                ssd_Param_1.get("bboxloss_using_focus_loss", False),
                'gama':
                ssd_Param_1.get("bboxloss_focus_gama", 2),
                'use_difficult_gt':
                ssd_Param_1.get("bboxloss_use_difficult_gt", False),
                'code_type':
                ssd_Param_1.get("bboxloss_code_type", P.PriorBox.CENTER_SIZE),
                'use_prior_for_matching':
                True,
                'encode_variance_in_target':
                False,
            }
            net["mbox_1_loss"] = L.DenseBBoxLoss(*mbox_1_layers, dense_bbox_loss_param=bboxloss_param, \
                                    loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                                    propagate_down=[True, True, False, False])
        else:
            bboxloss_param = {
                'gt_labels':
                ssd_Param_1.get('gt_labels', []),
                'target_labels':
                ssd_Param_1.get('target_labels', []),
                'num_classes':
                ssd_Param_1.get("num_classes", 2),
                'alias_id':
                ssd_Param_1.get("alias_id", 0),
                'loc_loss_type':
                ssd_Param_1.get("bboxloss_loc_loss_type",
                                P.MultiBoxLoss.SMOOTH_L1),
                'conf_loss_type':
                ssd_Param_1.get("bboxloss_conf_loss_type",
                                P.MultiBoxLoss.SOFTMAX),
                'loc_weight':
                ssd_Param_1.get("bboxloss_loc_weight", 1),
                'conf_weight':
                ssd_Param_1.get("bboxloss_conf_weight", 1),
                'overlap_threshold':
                ssd_Param_1.get("bboxloss_overlap_threshold", 0.5),
                'neg_overlap':
                ssd_Param_1.get("bboxloss_neg_overlap", 0.5),
                'size_threshold':
                ssd_Param_1.get("bboxloss_size_threshold", 0.0001),
                'do_neg_mining':
                ssd_Param_1.get("bboxloss_do_neg_mining", True),
                'neg_pos_ratio':
                ssd_Param_1.get("bboxloss_neg_pos_ratio", 3),
                'using_focus_loss':
                ssd_Param_1.get("bboxloss_using_focus_loss", False),
                'gama':
                ssd_Param_1.get("bboxloss_focus_gama", 2),
                'use_difficult_gt':
                ssd_Param_1.get("bboxloss_use_difficult_gt", False),
                'code_type':
                ssd_Param_1.get("bboxloss_code_type", P.PriorBox.CENTER_SIZE),
                'match_type':
                P.MultiBoxLoss.PER_PREDICTION,
                'share_location':
                True,
                'use_prior_for_matching':
                True,
                'background_label_id':
                0,
                'encode_variance_in_target':
                False,
                'map_object_to_agnostic':
                False,
            }
            net["mbox_1_loss"] = L.BBoxLoss(*mbox_1_layers, bbox_loss_param=bboxloss_param, \
                        loss_param=loss_param,include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                        propagate_down=[True, True, False, False])
    else:
        if ssd_Param_1.get("bboxloss_conf_loss_type",
                           P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.SOFTMAX:
            reshape_name = "mbox_1_conf_reshape"
            net[reshape_name] = L.Reshape(mbox_1_layers[1], \
                    shape=dict(dim=[0, -1, ssd_Param_1.get("num_classes",2)]))
            softmax_name = "mbox_1_conf_softmax"
            net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
            flatten_name = "mbox_1_conf_flatten"
            net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
            mbox_1_layers[1] = net[flatten_name]
        elif ssd_Param_1.get(
                "bboxloss_conf_loss_type",
                P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.LOGISTIC:
            sigmoid_name = "mbox_1_conf_sigmoid"
            net[sigmoid_name] = L.Sigmoid(mbox_1_layers[1])
            mbox_1_layers[1] = net[sigmoid_name]
        else:
            raise ValueError("Unknown conf loss type.")
        # Det-out param
        det_out_param = {
            'num_classes': ssd_Param_1.get("num_classes", 2),
            'target_labels': ssd_Param_1.get('detout_target_labels', []),
            'alias_id': ssd_Param_1.get("alias_id", 0),
            'conf_threshold': ssd_Param_1.get("detout_conf_threshold", 0.01),
            'nms_threshold': ssd_Param_1.get("detout_nms_threshold", 0.45),
            'size_threshold': ssd_Param_1.get("detout_size_threshold", 0.0001),
            'top_k': ssd_Param_1.get("detout_top_k", 30),
            'share_location': True,
            'code_type': P.PriorBox.CENTER_SIZE,
            'background_label_id': 0,
            'variance_encoded_in_target': False,
        }
        use_dense_boxes = ssd_Param_1.get('bboxloss_use_dense_boxes', False)
        if use_dense_boxes:
            net.detection_out_1 = L.DenseDetOut(*mbox_1_layers, \
            detection_output_param=det_out_param, \
            include=dict(phase=caffe_pb2.Phase.Value('TEST')))
        else:
            net.detection_out_1 = L.DetOut(*mbox_1_layers, \
         detection_output_param=det_out_param, \
         include=dict(phase=caffe_pb2.Phase.Value('TEST')))
    # make Loss & Detout for SSD2
    if use_ssd2_for_detection:
        mbox_2_layers = SsdDetectorHeaders(net, \
             net_width=net_width, net_height=net_height, data_layer=data_layer, \
             from_layers=ssd_Param_2.get('feature_layers',[]), \
             num_classes=ssd_Param_2.get("num_classes",2), \
             boxsizes=ssd_Param_2.get("anchor_boxsizes", []), \
             aspect_ratios=ssd_Param_2.get("anchor_aspect_ratios",[]), \
             prior_variance = ssd_Param_2.get("anchor_prior_variance",[0.1,0.1,0.2,0.2]), \
             flip=ssd_Param_2.get("anchor_flip",True), \
             clip=ssd_Param_2.get("anchor_clip",True), \
             normalizations=ssd_Param_2.get("interlayers_normalizations",[]), \
             use_batchnorm=ssd_Param_2.get("interlayers_use_batchnorm",True), \
             inter_layer_channels=ssd_Param_2.get("interlayers_channels_kernels",[]), \
             use_focus_loss=ssd_Param_2.get("bboxloss_using_focus_loss",False), \
             use_dense_boxes=ssd_Param_2.get('bboxloss_use_dense_boxes',False), \
             stage=2)
        # make Loss or Detout for SSD1
        if train:
            loss_param = get_loss_param(normalization=ssd_Param_2.get(
                "bboxloss_normalization", P.Loss.VALID))
            mbox_2_layers.append(net[gt_label])
            use_dense_boxes = ssd_Param_2.get('bboxloss_use_dense_boxes',
                                              False)
            if use_dense_boxes:
                bboxloss_param = {
                    'gt_labels':
                    ssd_Param_2.get('gt_labels', []),
                    'target_labels':
                    ssd_Param_2.get('target_labels', []),
                    'num_classes':
                    ssd_Param_2.get("num_classes", 2),
                    'alias_id':
                    ssd_Param_2.get("alias_id", 0),
                    'loc_loss_type':
                    ssd_Param_2.get("bboxloss_loc_loss_type",
                                    P.MultiBoxLoss.SMOOTH_L1),
                    'conf_loss_type':
                    ssd_Param_2.get("bboxloss_conf_loss_type",
                                    P.MultiBoxLoss.LOGISTIC),
                    'loc_weight':
                    ssd_Param_2.get("bboxloss_loc_weight", 1),
                    'conf_weight':
                    ssd_Param_2.get("bboxloss_conf_weight", 1),
                    'overlap_threshold':
                    ssd_Param_2.get("bboxloss_overlap_threshold", 0.5),
                    'neg_overlap':
                    ssd_Param_2.get("bboxloss_neg_overlap", 0.5),
                    'size_threshold':
                    ssd_Param_2.get("bboxloss_size_threshold", 0.0001),
                    'do_neg_mining':
                    ssd_Param_2.get("bboxloss_do_neg_mining", True),
                    'neg_pos_ratio':
                    ssd_Param_2.get("bboxloss_neg_pos_ratio", 3),
                    'using_focus_loss':
                    ssd_Param_2.get("bboxloss_using_focus_loss", False),
                    'gama':
                    ssd_Param_2.get("bboxloss_focus_gama", 2),
                    'use_difficult_gt':
                    ssd_Param_2.get("bboxloss_use_difficult_gt", False),
                    'code_type':
                    ssd_Param_2.get("bboxloss_code_type",
                                    P.PriorBox.CENTER_SIZE),
                    'use_prior_for_matching':
                    True,
                    'encode_variance_in_target':
                    False,
                }
                net["mbox_2_loss"] = L.DenseBBoxLoss(*mbox_2_layers, dense_bbox_loss_param=bboxloss_param, \
                                        loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                                        propagate_down=[True, True, False, False])
            else:
                bboxloss_param = {
                    'gt_labels':
                    ssd_Param_2.get('gt_labels', []),
                    'target_labels':
                    ssd_Param_2.get('target_labels', []),
                    'num_classes':
                    ssd_Param_2.get("num_classes", 2),
                    'alias_id':
                    ssd_Param_2.get("alias_id", 0),
                    'loc_loss_type':
                    ssd_Param_2.get("bboxloss_loc_loss_type",
                                    P.MultiBoxLoss.SMOOTH_L1),
                    'conf_loss_type':
                    ssd_Param_2.get("bboxloss_conf_loss_type",
                                    P.MultiBoxLoss.SOFTMAX),
                    'loc_weight':
                    ssd_Param_2.get("bboxloss_loc_weight", 1),
                    'conf_weight':
                    ssd_Param_2.get("bboxloss_conf_weight", 1),
                    'overlap_threshold':
                    ssd_Param_2.get("bboxloss_overlap_threshold", 0.5),
                    'neg_overlap':
                    ssd_Param_2.get("bboxloss_neg_overlap", 0.5),
                    'size_threshold':
                    ssd_Param_2.get("bboxloss_size_threshold", 0.0001),
                    'do_neg_mining':
                    ssd_Param_2.get("bboxloss_do_neg_mining", True),
                    'neg_pos_ratio':
                    ssd_Param_2.get("bboxloss_neg_pos_ratio", 3),
                    'using_focus_loss':
                    ssd_Param_2.get("bboxloss_using_focus_loss", False),
                    'gama':
                    ssd_Param_2.get("bboxloss_focus_gama", 2),
                    'use_difficult_gt':
                    ssd_Param_2.get("bboxloss_use_difficult_gt", False),
                    'code_type':
                    ssd_Param_2.get("bboxloss_code_type",
                                    P.PriorBox.CENTER_SIZE),
                    'match_type':
                    P.MultiBoxLoss.PER_PREDICTION,
                    'share_location':
                    True,
                    'use_prior_for_matching':
                    True,
                    'background_label_id':
                    0,
                    'encode_variance_in_target':
                    False,
                    'map_object_to_agnostic':
                    False,
                }
                net["mbox_2_loss"] = L.BBoxLoss(*mbox_2_layers, bbox_loss_param=bboxloss_param, \
                            loss_param=loss_param,include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                            propagate_down=[True, True, False, False])
        else:
            if ssd_Param_2.get(
                    "bboxloss_conf_loss_type",
                    P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.SOFTMAX:
                reshape_name = "mbox_2_conf_reshape"
                net[reshape_name] = L.Reshape(mbox_2_layers[1], \
                        shape=dict(dim=[0, -1, ssd_Param_2.get("num_classes",2)]))
                softmax_name = "mbox_2_conf_softmax"
                net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
                flatten_name = "mbox_2_conf_flatten"
                net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
                mbox_2_layers[1] = net[flatten_name]
            elif ssd_Param_2.get(
                    "bboxloss_conf_loss_type",
                    P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.LOGISTIC:
                sigmoid_name = "mbox_2_conf_sigmoid"
                net[sigmoid_name] = L.Sigmoid(mbox_2_layers[1])
                mbox_2_layers[1] = net[sigmoid_name]
            else:
                raise ValueError("Unknown conf loss type.")
            # Det-out param
            det_out_param = {
                'num_classes': ssd_Param_2.get("num_classes", 2),
                'target_labels': ssd_Param_2.get('detout_target_labels', []),
                'alias_id': ssd_Param_2.get("alias_id", 0),
                'conf_threshold': ssd_Param_2.get("detout_conf_threshold",
                                                  0.01),
                'nms_threshold': ssd_Param_2.get("detout_nms_threshold", 0.45),
                'size_threshold': ssd_Param_2.get("detout_size_threshold",
                                                  0.0001),
                'top_k': ssd_Param_2.get("detout_top_k", 30),
                'share_location': True,
                'code_type': P.PriorBox.CENTER_SIZE,
                'background_label_id': 0,
                'variance_encoded_in_target': False,
            }
            use_dense_boxes = ssd_Param_2.get('bboxloss_use_dense_boxes',
                                              False)
            if use_dense_boxes:
                net.detection_out_2 = L.DenseDetOut(*mbox_2_layers, \
                detection_output_param=det_out_param, \
                include=dict(phase=caffe_pb2.Phase.Value('TEST')))
            else:
                net.detection_out_2 = L.DetOut(*mbox_2_layers, \
             detection_output_param=det_out_param, \
             include=dict(phase=caffe_pb2.Phase.Value('TEST')))
    # EVAL in TEST MODE
    if not train:
        det_eval_param = {
            'gt_labels':
            eval_Param.get('eval_gt_labels', []),
            'num_classes':
            eval_Param.get("eval_num_classes", 2),
            'evaluate_difficult_gt':
            eval_Param.get("eval_difficult_gt", False),
            'boxsize_threshold':
            eval_Param.get("eval_boxsize_threshold",
                           [0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25]),
            'iou_threshold':
            eval_Param.get("eval_iou_threshold", [0.9, 0.75, 0.5]),
            'background_label_id':
            0,
        }
        if use_ssd2_for_detection:
            det_out_layers = []
            det_out_layers.append(net['detection_out_1'])
            det_out_layers.append(net['detection_out_2'])
            name = 'det_out'
            net[name] = L.Concat(*det_out_layers, axis=2)
            net.det_accu = L.DetEval(net[name], net[gt_label], \
                   detection_evaluate_param=det_eval_param, \
                   include=dict(phase=caffe_pb2.Phase.Value('TEST')))
        else:
            net.det_accu = L.DetEval(net['detection_out_1'], net[gt_label], \
                   detection_evaluate_param=det_eval_param, \
                   include=dict(phase=caffe_pb2.Phase.Value('TEST')))
    return net
コード例 #3
0
def HandNet_DarkBase(net, train=True, data_layer="data", gt_label="label", \
           net_width=512, net_height=288):
    use_bn = False
    lr_mult = 0
    use_global_stats = None
    channels = ((32, ), (64, ), (128, 64, 128), (192, 96, 192, 96, 192))
    strides = (True, True, True, False)
    kernels = ((3, ), (3, ), (3, 1, 3), (3, 1, 3, 1, 3))
    pool_last = (False, False, False, True)
    net = VGG16_BaseNet_ChangeChannel(net,
                                      from_layer=data_layer,
                                      channels=channels,
                                      strides=strides,
                                      use_bn=use_bn,
                                      kernels=kernels,
                                      freeze_layers=[],
                                      pool_last=pool_last,
                                      lr_mult=lr_mult,
                                      decay_mult=lr_mult,
                                      use_global_stats=use_global_stats)
    flag_with_deconv = True
    flag_eltwise = False
    from_layer = "conv4_5"
    if flag_with_deconv:
        Deconv(net,
               from_layer,
               num_output=64,
               group=1,
               kernel_size=2,
               stride=2,
               lr_mult=1.0,
               decay_mult=1.0,
               use_bn=True,
               use_scale=True,
               use_relu=False)
    print net.keys()
    if flag_eltwise:
        use_bn = True
        from_layer = "conv1"
        out_layer = 'conv2_hand'
        ConvBNUnitLayer(net,
                        from_layer,
                        out_layer,
                        use_bn=use_bn,
                        use_relu=False,
                        num_output=64,
                        kernel_size=3,
                        pad=1,
                        stride=2,
                        use_scale=True,
                        leaky=False,
                        lr_mult=1,
                        decay_mult=1)

        out_layer = "hand_multiscale"
        net[out_layer] = L.Eltwise(net["conv2_hand"],
                                   net["conv4_3_deconv"],
                                   eltwise_param=dict(operation=P.Eltwise.SUM))
        from_layer = out_layer
        out_layer = from_layer + "_relu"
        net[out_layer] = L.ReLU(net[from_layer], in_place=True)

    # make Loss & Detout for SSD2
    mbox_2_layers = SsdDetectorHeaders(net, \
          net_width=net_width, net_height=net_height, data_layer=data_layer, \
          from_layers=ssd_Param_2.get('feature_layers',[]), \
          num_classes=ssd_Param_2.get("num_classes",2), \
          boxsizes=ssd_Param_2.get("anchor_boxsizes", []), \
          aspect_ratios=ssd_Param_2.get("anchor_aspect_ratios",[]), \
          prior_variance = ssd_Param_2.get("anchor_prior_variance",[0.1,0.1,0.2,0.2]), \
          flip=ssd_Param_2.get("anchor_flip",True), \
          clip=ssd_Param_2.get("anchor_clip",True), \
          normalizations=ssd_Param_2.get("interlayers_normalizations",[]), \
          use_batchnorm=ssd_Param_2.get("interlayers_use_batchnorm",True), \
          inter_layer_channels=ssd_Param_2.get("interlayers_channels_kernels",[]), \
          use_focus_loss=ssd_Param_2.get("bboxloss_using_focus_loss",False), \
          use_dense_boxes=ssd_Param_2.get('bboxloss_use_dense_boxes',False), \
          stage=2)
    # make Loss or Detout for SSD1
    if train:
        loss_param = get_loss_param(normalization=ssd_Param_2.get(
            "bboxloss_normalization", P.Loss.VALID))
        mbox_2_layers.append(net[gt_label])
        use_dense_boxes = ssd_Param_2.get('bboxloss_use_dense_boxes', False)
        if use_dense_boxes:
            bboxloss_param = {
                'gt_labels':
                ssd_Param_2.get('gt_labels', []),
                'target_labels':
                ssd_Param_2.get('target_labels', []),
                'num_classes':
                ssd_Param_2.get("num_classes", 2),
                'alias_id':
                ssd_Param_2.get("alias_id", 0),
                'loc_loss_type':
                ssd_Param_2.get("bboxloss_loc_loss_type",
                                P.MultiBoxLoss.SMOOTH_L1),
                'conf_loss_type':
                ssd_Param_2.get("bboxloss_conf_loss_type",
                                P.MultiBoxLoss.LOGISTIC),
                'loc_weight':
                ssd_Param_2.get("bboxloss_loc_weight", 1),
                'conf_weight':
                ssd_Param_2.get("bboxloss_conf_weight", 1),
                'overlap_threshold':
                ssd_Param_2.get("bboxloss_overlap_threshold", 0.5),
                'neg_overlap':
                ssd_Param_2.get("bboxloss_neg_overlap", 0.5),
                'size_threshold':
                ssd_Param_2.get("bboxloss_size_threshold", 0.0001),
                'do_neg_mining':
                ssd_Param_2.get("bboxloss_do_neg_mining", True),
                'neg_pos_ratio':
                ssd_Param_2.get("bboxloss_neg_pos_ratio", 3),
                'using_focus_loss':
                ssd_Param_2.get("bboxloss_using_focus_loss", False),
                'gama':
                ssd_Param_2.get("bboxloss_focus_gama", 2),
                'use_difficult_gt':
                ssd_Param_2.get("bboxloss_use_difficult_gt", False),
                'code_type':
                ssd_Param_2.get("bboxloss_code_type", P.PriorBox.CENTER_SIZE),
                'use_prior_for_matching':
                True,
                'encode_variance_in_target':
                False,
                'flag_noperson':
                ssd_Param_2.get('flag_noperson', False),
                'size_threshold_max':
                ssd_Param_2.get("bboxloss_size_threshold_max", 2),
                'flag_showdebug':
                ssd_Param_2.get("flag_showdebug", False),
                'flag_forcematchallgt':
                ssd_Param_2.get("flag_forcematchallgt", False),
                'flag_areamaxcheckinmatch':
                ssd_Param_2.get("flag_areamaxcheckinmatch", False),
            }
            net["mbox_2_loss"] = L.DenseBBoxLoss(*mbox_2_layers, dense_bbox_loss_param=bboxloss_param, \
                                    loss_param=loss_param, include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                                    propagate_down=[True, True, False, False])
        else:
            bboxloss_param = {
                'gt_labels':
                ssd_Param_2.get('gt_labels', []),
                'target_labels':
                ssd_Param_2.get('target_labels', []),
                'num_classes':
                ssd_Param_2.get("num_classes", 2),
                'alias_id':
                ssd_Param_2.get("alias_id", 0),
                'loc_loss_type':
                ssd_Param_2.get("bboxloss_loc_loss_type",
                                P.MultiBoxLoss.SMOOTH_L1),
                'conf_loss_type':
                ssd_Param_2.get("bboxloss_conf_loss_type",
                                P.MultiBoxLoss.SOFTMAX),
                'loc_weight':
                ssd_Param_2.get("bboxloss_loc_weight", 1),
                'conf_weight':
                ssd_Param_2.get("bboxloss_conf_weight", 1),
                'overlap_threshold':
                ssd_Param_2.get("bboxloss_overlap_threshold", 0.5),
                'neg_overlap':
                ssd_Param_2.get("bboxloss_neg_overlap", 0.5),
                'size_threshold':
                ssd_Param_2.get("bboxloss_size_threshold", 0.0001),
                'do_neg_mining':
                ssd_Param_2.get("bboxloss_do_neg_mining", True),
                'neg_pos_ratio':
                ssd_Param_2.get("bboxloss_neg_pos_ratio", 3),
                'using_focus_loss':
                ssd_Param_2.get("bboxloss_using_focus_loss", False),
                'gama':
                ssd_Param_2.get("bboxloss_focus_gama", 2),
                'use_difficult_gt':
                ssd_Param_2.get("bboxloss_use_difficult_gt", False),
                'code_type':
                ssd_Param_2.get("bboxloss_code_type", P.PriorBox.CENTER_SIZE),
                'match_type':
                P.MultiBoxLoss.PER_PREDICTION,
                'share_location':
                True,
                'use_prior_for_matching':
                True,
                'background_label_id':
                0,
                'encode_variance_in_target':
                False,
                'map_object_to_agnostic':
                False,
            }
            net["mbox_2_loss"] = L.BBoxLoss(*mbox_2_layers, bbox_loss_param=bboxloss_param, \
                        loss_param=loss_param,include=dict(phase=caffe_pb2.Phase.Value('TRAIN')), \
                        propagate_down=[True, True, False, False])
    else:
        if ssd_Param_2.get("bboxloss_conf_loss_type",
                           P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.SOFTMAX:
            reshape_name = "mbox_2_conf_reshape"
            net[reshape_name] = L.Reshape(mbox_2_layers[1], \
                    shape=dict(dim=[0, -1, ssd_Param_2.get("num_classes",2)]))
            softmax_name = "mbox_2_conf_softmax"
            net[softmax_name] = L.Softmax(net[reshape_name], axis=2)
            flatten_name = "mbox_2_conf_flatten"
            net[flatten_name] = L.Flatten(net[softmax_name], axis=1)
            mbox_2_layers[1] = net[flatten_name]
        elif ssd_Param_2.get(
                "bboxloss_conf_loss_type",
                P.MultiBoxLoss.SOFTMAX) == P.MultiBoxLoss.LOGISTIC:
            sigmoid_name = "mbox_2_conf_sigmoid"
            net[sigmoid_name] = L.Sigmoid(mbox_2_layers[1])
            mbox_2_layers[1] = net[sigmoid_name]
        else:
            raise ValueError("Unknown conf loss type.")
        # Det-out param
        det_out_param = {
            'num_classes': ssd_Param_2.get("num_classes", 2),
            'target_labels': ssd_Param_2.get('detout_target_labels', []),
            'alias_id': ssd_Param_2.get("alias_id", 0),
            'conf_threshold': ssd_Param_2.get("detout_conf_threshold", 0.01),
            'nms_threshold': ssd_Param_2.get("detout_nms_threshold", 0.45),
            'size_threshold': ssd_Param_2.get("detout_size_threshold", 0.0001),
            'top_k': ssd_Param_2.get("detout_top_k", 30),
            'share_location': True,
            'code_type': P.PriorBox.CENTER_SIZE,
            'background_label_id': 0,
            'variance_encoded_in_target': False,
        }
        use_dense_boxes = ssd_Param_2.get('bboxloss_use_dense_boxes', False)
        if use_dense_boxes:
            net.detection_out_2 = L.DenseDetOut(*mbox_2_layers, \
               detection_output_param=det_out_param, \
               include=dict(phase=caffe_pb2.Phase.Value('TEST')))
        else:
            net.detection_out_2 = L.DetOut(*mbox_2_layers, \
               detection_output_param=det_out_param, \
               include=dict(phase=caffe_pb2.Phase.Value('TEST')))
    # EVAL in TEST MODE
    if not train:
        det_eval_param = {
            'gt_labels':
            eval_Param.get('eval_gt_labels', []),
            'num_classes':
            eval_Param.get("eval_num_classes", 2),
            'evaluate_difficult_gt':
            eval_Param.get("eval_difficult_gt", False),
            'boxsize_threshold':
            eval_Param.get("eval_boxsize_threshold",
                           [0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25]),
            'iou_threshold':
            eval_Param.get("eval_iou_threshold", [0.9, 0.75, 0.5]),
            'background_label_id':
            0,
        }
        net.det_accu = L.DetEval(net['detection_out_2'], net[gt_label], \
                   detection_evaluate_param=det_eval_param, \
                   include=dict(phase=caffe_pb2.Phase.Value('TEST')))
    return net