def write_solver_file(solver_file, train_model, test_models, type, base_lr, momentum, weight_decay, lr_policy, gamma, power, random_seed, max_iter, clip_gradients, snapshot_prefix,display=0): '''Writes a solver prototxt file with parameters set to the corresponding argument values. In particular, the train_net parameter is set to train_model, and a test_net parameter is added for each of test_models, which should be a list.''' param = SolverParameter() param.train_net = train_model for test_model in test_models: param.test_net.append(test_model) param.test_iter.append(0) #don't test automatically param.test_interval = max_iter param.type = type param.base_lr = base_lr param.momentum = momentum param.weight_decay = weight_decay param.lr_policy = lr_policy param.gamma = gamma param.power = power param.display = display #don't print solver iterations unless requested param.random_seed = random_seed param.max_iter = max_iter if clip_gradients > 0: param.clip_gradients = clip_gradients param.snapshot_prefix = snapshot_prefix print "WRITING",solver_file with open(solver_file,'w') as f: f.write(str(param))
def write_solver_file(solver_file, train_model, test_models, type, base_lr, momentum, weight_decay, lr_policy, gamma, power, random_seed, max_iter, clip_gradients, snapshot_prefix): '''Writes a solver prototxt file with parameters set to the corresponding argument values. In particular, the train_net parameter is set to train_model, and a test_net parameter is added for each of test_models, which should be a list.''' param = SolverParameter() param.train_net = train_model for test_model in test_models: param.test_net.append(test_model) param.test_iter.append(0) #don't test automatically param.test_interval = max_iter param.type = type param.base_lr = base_lr param.momentum = momentum param.weight_decay = weight_decay param.lr_policy = lr_policy param.gamma = gamma param.power = power param.display = 0 #don't print solver iterations param.random_seed = random_seed param.max_iter = max_iter if clip_gradients > 0: param.clip_gradients = clip_gradients param.snapshot_prefix = snapshot_prefix print "WRITING", solver_file with open(solver_file, 'w') as f: f.write(str(param))
def init_solver(self): """ Helper method to initialize the solver. """ solver_param = SolverParameter() solver_param.snapshot_prefix = self._hyperparams['weights_file_prefix'] solver_param.display = 0 # Don't display anything. solver_param.base_lr = self._hyperparams['lr'] solver_param.lr_policy = self._hyperparams['lr_policy'] solver_param.momentum = self._hyperparams['momentum'] solver_param.weight_decay = self._hyperparams['weight_decay'] solver_param.type = self._hyperparams['solver_type'] solver_param.random_seed = self._hyperparams['random_seed'] # Pass in net parameter either by filename or protostring. if isinstance(self._hyperparams['network_model'], basestring): self.solver = caffe.get_solver(self._hyperparams['network_model']) else: network_arch_params = self._hyperparams['network_arch_params'] network_arch_params['dim_input'] = self._dO network_arch_params['dim_output'] = self._dU network_arch_params['batch_size'] = self.batch_size network_arch_params['phase'] = TRAIN solver_param.train_net_param.CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward in python. network_arch_params['batch_size'] = 1 network_arch_params['phase'] = TEST solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward on the robot. network_arch_params['batch_size'] = 1 network_arch_params['phase'] = 'deploy' solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # These are required by Caffe to be set, but not used. solver_param.test_iter.append(1) solver_param.test_iter.append(1) solver_param.test_interval = 1000000 f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.write(MessageToString(solver_param)) f.close() self.solver = caffe.get_solver(f.name)
def _init_solver(self): """ Helper method to initialize the solver. """ solver_param = SolverParameter() solver_param.display = 0 # Don't display anything. solver_param.base_lr = self._hyperparams['lr'] solver_param.lr_policy = self._hyperparams['lr_policy'] solver_param.momentum = self._hyperparams['momentum'] solver_param.weight_decay = self._hyperparams['weight_decay'] solver_param.type = self._hyperparams['solver_type'] solver_param.random_seed = self._hyperparams['random_seed'] # Pass in net parameter by protostring (could add option to input prototxt file). network_arch_params = self._hyperparams['network_arch_params'] network_arch_params['dim_input'] = self._dO network_arch_params['demo_batch_size'] = self._hyperparams['demo_batch_size'] network_arch_params['sample_batch_size'] = self._hyperparams['sample_batch_size'] network_arch_params['T'] = self._T network_arch_params['phase'] = TRAIN solver_param.train_net_param.CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # For running forward in python. network_arch_params['phase'] = TEST solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) network_arch_params['phase'] = 'forward_feat' solver_param.test_net_param.add().CopyFrom( self._hyperparams['network_model'](**network_arch_params) ) # These are required by Caffe to be set, but not used. solver_param.test_iter.append(1) solver_param.test_iter.append(1) solver_param.test_interval = 1000000 f = tempfile.NamedTemporaryFile(mode='w+', delete=False) f.write(MessageToString(solver_param)) f.close() self.solver = caffe.get_solver(f.name)