コード例 #1
0
    def __init__(self, params):

        self.batch_size = params['batch_size']
        self.outshape = params['shape']
        self.classes_per_batch = params['classes_per_batch']

        self.img_lmdb = lmdbs(params['img_source'])
        if params['skt_source'].endswith('.pkl'):
            self.skt_lmdb = svgs(params['skt_source'])
        else:
            self.skt_lmdb = lmdbs(params['skt_source'])
        self.img_labels = self.img_lmdb.get_label_list()
        self.skt_labels = self.skt_lmdb.get_label_list()
        self.img_mean = biproto2py(params['mean_file']).squeeze()

        self.num_classes = len(set(self.skt_labels))
        assert len(self.skt_labels)%self.num_classes==0, \
          'Unequal sketch training samples for each class'
        self.skt_per_class = len(self.skt_labels) / self.num_classes

        if 'hard_pos' in params:
            self.hard_sel = 'hard_pos'
            self.hard_sel_file = params['hard_pos']
        elif 'hard_neg' in params:
            self.hard_sel = 'hard_neg'
            self.hard_sel_file = params['hard_neg']
        elif 'hard_pn' in params:
            self.hard_sel = 'hard_pn'
            self.hard_sel_file = params['hard_pn']
        else:
            assert False, 'Hard selection must be on'

        self.watchChange = WatchDog(
            self.hard_sel_file)  #check if file has been updated
        self.hardsel_tab = np.load(self.hard_sel_file)
        self.hard_pos = self.hardsel_tab['pos']
        self.hard_neg = self.hardsel_tab['neg']

        self.img_labels_dict, self.classes = vec2dic(self.img_labels)
        self.NSKTS = len(self.skt_labels)
        self.indexlist = range(self.NSKTS)
        self.shuffle_keeping_min_classes_per_batch()
        self._cur = 0  # current image

        # this class does some simple data-manipulations
        self.img_augment = SimpleAugment(mean=self.img_mean,
                                         shape=params['shape'],
                                         scale=params['scale'],
                                         rot=params['rot'])

        if 'verbose' not in params:
            print "BatchLoader initialized with {} sketches, {} images of {} classes".format(
                len(self.skt_labels), len(self.img_labels), self.num_classes)
            print('Hard selection: {}'.format(self.hard_sel))
        #create threadpools for parallel augmentation
        self.pool = ThreadPool()  #4
コード例 #2
0
    def __init__(self, params):

        self.batch_size = params['batch_size']
        self.outshape = params['shape']
        self.classes_per_batch = params['classes_per_batch']

        self.img_lmdb = lmdbs(params['img_source'])
        if params['skt_source'].endswith('.pkl'):
            self.skt_lmdb = svgs(params['skt_source'])
        else:
            self.skt_lmdb = lmdbs(params['skt_source'])
        self.img_labels = self.img_lmdb.get_label_list()
        self.skt_labels = self.skt_lmdb.get_label_list()
        self.img_mean = biproto2py(params['mean_file']).squeeze()

        self.num_classes = len(set(self.skt_labels))
        assert len(self.skt_labels)%self.num_classes==0, \
          'Unequal sketch training samples for each class'
        self.skt_per_class = len(self.skt_labels) / self.num_classes

        self.hard_sel = 0

        self.img_labels_dict, self.classes = vec2dic(self.img_labels)

        self.indexlist = range(len(self.skt_labels))
        self.shuffle_keeping_min_classes_per_batch()
        self._cur = 0  # current image

        # this class does some simple data-manipulations
        self.img_augment = SimpleAugment(mean=self.img_mean,
                                         shape=params['shape'],
                                         scale=params['scale'],
                                         rot=params['rot'])

        if 'verbose' not in params:
            print "BatchLoader initialized with {} sketches, {} images of {} classes".format(
                len(self.skt_labels), len(self.img_labels), self.num_classes)
        #create threadpools for parallel augmentation
        self.pool = ThreadPool()  #4
コード例 #3
0
    def __init__(self, params):

        self.batch_size = params['batch_size']
        self.img_shape = params['shape']
        self.classes_per_batch = params['classes_per_batch']

        self.img_lmdb = lmdbs(params['img_source'])
        if params['skt_source'].endswith('.pkl'):
            self.skt_lmdb = svgs(params['skt_source'])
        else:
            self.skt_lmdb = lmdbs(params['skt_source'])
        self.img_labels = self.img_lmdb.get_label_list()
        self.skt_labels = self.skt_lmdb.get_label_list()
        label_ids = list(set(self.img_labels))
        NCATS = len(label_ids)
        if label_ids[0] != 0 or label_ids[-1] != NCATS - 1:
            if 'verbose' not in params:
                print 'Your data labels are not [0:{}]. Converting label ...'.format(
                    NCATS - 1)
            self.img_labels = [
                label_ids.index(label) for label in self.img_labels
            ]
            self.skt_labels = [
                label_ids.index(label) for label in self.skt_labels
            ]

        self.img_mean = biproto2py(params['mean_file']).squeeze()
        #self.skt_mean = biproto2py(params['skt_mean']).squeeze()

        self.num_classes = len(set(self.skt_labels))
        assert self.num_classes == NCATS, 'XX!!Sketch & image datasets unequal #categories'
        assert len(self.skt_labels)%self.num_classes==0, \
          'Unequal sketch training samples for each class'
        self.skt_per_class = len(self.skt_labels) / self.num_classes

        if 'hard_pos' in params:
            self.hard_sel = 1
            self.hard_pos = np.load(params['hard_pos'])['pos']
        elif 'hard_neg' in params:
            self.hard_sel = 2
            self.hard_neg = np.load(params['hard_neg'])['neg']
        elif 'hard_pn' in params:
            self.hard_sel = 3
            tmp = np.load(params['hard_pn'])
            self.hard_pos = tmp['pos']
            self.hard_neg = tmp['neg']
        else:  #hard selection turn off
            self.hard_sel = 0

        #self.img_labels_dict, self.classes = vec2dic(self.img_labels)

        self.indexlist = range(len(self.skt_labels))
        self.indexlist_img = range(len(self.img_labels))
        #self.shuffle_keeping_min_classes_per_batch()
        shuffle(self.indexlist)
        shuffle(self.indexlist_img)
        self._cur = 0  # current image
        self._cur_img = 0

        # this class does some simple data-manipulations
        self.img_augment = SimpleAugment(mean=self.img_mean,
                                         shape=self.img_shape,
                                         scale=params['scale'],
                                         rot=params['rot'])

        print "BatchLoader initialized with {} sketches, {} images of {} classes".format(
            len(self.skt_labels), len(self.img_labels), self.num_classes)
        #create threadpools for parallel augmentation
        self.pool = ThreadPool()  #4