コード例 #1
0
class DilatedBlockLayerParams(LayerParams):
    @classmethod
    def name_prefix(cls) -> str:
        return "dilated_block"

    @classmethod
    def cls(cls) -> Type["Layer"]:
        return DilatedBlockLayer

    def downscale(self, size: IntVec2D) -> IntVec2D:
        return IntVec2D(
            (size.x + self.strides.x - 1) // self.strides.x,
            (size.y + self.strides.y - 1) // self.strides.y,
        )

    def downscale_factor(self, factor: IntVec2D) -> IntVec2D:
        return IntVec2D(factor.x * self.strides.x, factor.y * self.strides.y)

    filters: int = 40
    kernel_size: IntVec2D = field(default_factory=lambda: IntVec2D(3, 3))
    strides: IntVec2D = field(default_factory=lambda: IntVec2D(1, 1))

    padding: str = "same"
    activation: str = "relu"
    dilated_depth: int = 2
コード例 #2
0
class MaxPool2DLayerParams(LayerParams):
    @classmethod
    def name_prefix(cls) -> str:
        return "maxpool2d"

    @classmethod
    def cls(cls) -> Type["Layer"]:
        return MaxPool2DLayer

    def downscale(self, size: IntVec2D) -> IntVec2D:
        strides = self.real_strides()
        return IntVec2D((size.x + strides.x - 1) // strides.x,
                        (size.y + strides.y - 1) // strides.y)

    def downscale_factor(self, factor: IntVec2D) -> IntVec2D:
        strides = self.real_strides()
        return IntVec2D(factor.x * strides.x, factor.y * strides.y)

    def real_strides(self) -> IntVec2D:
        if self.strides is None:
            return self.pool_size
        return IntVec2D(
            self.strides.x if self.strides.x >= 0 else self.pool_size.x,
            self.strides.y if self.strides.y >= 0 else self.pool_size.y,
        )

    pool_size: IntVec2D = field(default_factory=lambda: IntVec2D(2, 2),
                                metadata=pai_meta(tuple_like=True))
    strides: IntVec2D = field(default_factory=lambda: IntVec2D(-1, -1),
                              metadata=pai_meta(tuple_like=True))

    padding: str = "same"
コード例 #3
0
class TransposedConv2DLayerParams(LayerParams):
    @classmethod
    def name_prefix(cls) -> str:
        return "tconv2d"

    @classmethod
    def cls(cls) -> Type["Layer"]:
        return TransposedConv2DLayer

    def downscale(self, size: IntVec2D) -> IntVec2D:
        return IntVec2D(size.x * self.strides.x, size.y * self.strides.y)

    def downscale_factor(self, size: IntVec2D) -> IntVec2D:
        return IntVec2D(
            (size.x + self.strides.x - 1) // self.strides.x,
            (size.y + self.strides.y - 1) // self.strides.y,
        )

    filters: int = 40
    kernel_size: IntVec2D = field(default_factory=lambda: IntVec2D(3, 3),
                                  metadata=pai_meta(tuple_like=True))
    strides: IntVec2D = field(default_factory=lambda: IntVec2D(2, 2),
                              metadata=pai_meta(tuple_like=True))

    padding: str = "same"
    activation: str = "relu"
コード例 #4
0
 def compute_max_downscale_factor(self) -> IntVec2D:
     factor = IntVec2D(1, 1)
     max_factor = IntVec2D(1, 1)
     for layer in self.layers:
         factor = layer.downscale_factor(factor)
         max_factor.x = max(max_factor.x, factor.x)
         max_factor.y = max(max_factor.y, factor.y)
     return max_factor
コード例 #5
0
 def test_pure_cnn_architecture(self):
     trainer_params = uw3_trainer_params()
     trainer_params.scenario.model.layers = [
         Conv2DLayerParams(filters=10),
         MaxPool2DLayerParams(),
         Conv2DLayerParams(filters=20,
                           strides=IntVec2D(2, 2),
                           kernel_size=IntVec2D(4, 4)),
         Conv2DLayerParams(filters=30),
     ]
     with tempfile.TemporaryDirectory() as d:
         trainer_params.output_dir = d
         main(trainer_params)
コード例 #6
0
 def compute_downscaled(self, size: Union[int, IntVec2D, Tuple[Any, Any]]):
     if isinstance(size, int):
         for layer in self.layers:
             size = layer.downscale(IntVec2D(size, 1)).x
     elif isinstance(size, IntVec2D):
         for layer in self.layers:
             size = layer.downscale(size)
     elif isinstance(size, tuple):
         for layer in self.layers:
             size = layer.downscale(IntVec2D(size[0], size[1]))
             size = size.x, size.y
     else:
         raise NotImplementedError
     return size
コード例 #7
0
 def real_strides(self) -> IntVec2D:
     if self.strides is None:
         return self.pool_size
     return IntVec2D(
         self.strides.x if self.strides.x >= 0 else self.pool_size.x,
         self.strides.y if self.strides.y >= 0 else self.pool_size.y,
     )
コード例 #8
0
 def test_pure_cnn_architecture(self):
     trainer_params = uw3_trainer_params()
     trainer_params.scenario.model.layers = [
         Conv2DLayerParams(filters=10),
         MaxPool2DLayerParams(),
         Conv2DLayerParams(filters=20,
                           strides=IntVec2D(2, 2),
                           kernel_size=IntVec2D(4, 4)),
         Conv2DLayerParams(filters=30),
     ]
     post_init(trainer_params)
     cmd_line_trainer_params = parse_args(
         ["--network", "conv=10,pool=2x2,conv=20:4x4:2x2,conv=30"])
     self.assertDictEqual(trainer_params.scenario.model.to_dict(),
                          cmd_line_trainer_params.scenario.model.to_dict())
     cmd_line_trainer_params = parse_args([
         "--model.layers",
         "Conv",
         "Pool",
         "Conv",
         "Conv",
         "--model.layers.0.filters",
         "10",
         "--model.layers.2.filters",
         "20",
         "--model.layers.2.kernel_size.x",
         "4",
         "--model.layers.2.kernel_size.y",
         "4",
         "--model.layers.2.strides.x",
         "2",
         "--model.layers.2.strides.y",
         "2",
         "--model.layers.3.filters",
         "30",
     ])
     self.assertDictEqual(trainer_params.scenario.model.to_dict(),
                          cmd_line_trainer_params.scenario.model.to_dict())
     with tempfile.TemporaryDirectory() as d:
         trainer_params.output_dir = d
         main(trainer_params)
コード例 #9
0
class Conv2DLayerParams(LayerParams):
    @classmethod
    def name_prefix(cls) -> str:
        return 'conv2d'

    @classmethod
    def cls(cls) -> Type['Layer']:
        return Conv2DLayer

    def downscale(self, size: IntVec2D) -> IntVec2D:
        return IntVec2D((size.x + self.strides.x - 1) // self.strides.x, (size.y + self.strides.y - 1) // self.strides.y)

    def downscale_factor(self, factor: IntVec2D) -> IntVec2D:
        return IntVec2D(factor.x * self.strides.x, factor.y * self.strides.y)

    filters: int = 40
    kernel_size: IntVec2D = field(default_factory=lambda: IntVec2D(3, 3))
    strides: IntVec2D = field(default_factory=lambda: IntVec2D(1, 1))

    padding: str = "same"
    activation: str = 'relu'
コード例 #10
0
 def default_trainer_params(cls):
     p = super().default_trainer_params()
     p.scenario.model.layers = [
         Conv2DLayerParams(filters=2),
         MaxPool2DLayerParams(pool_size=IntVec2D(4, 4)),
         BiLSTMLayerParams(hidden_nodes=2),
         DropoutLayerParams(rate=0.5),
     ]
     p.gen.setup.val.batch_size = 1
     p.gen.setup.val.num_processes = 1
     p.gen.setup.train.batch_size = 1
     p.gen.setup.train.num_processes = 1
     p.epochs = 1
     p.samples_per_epoch = 2
     p.scenario.data.pre_proc.run_parallel = False
     post_init(p)
     return p
コード例 #11
0
class MaxPool2DLayerParams(LayerParams):
    @classmethod
    def name_prefix(cls) -> str:
        return "maxpool2d"

    @classmethod
    def cls(cls) -> Type["Layer"]:
        return MaxPool2DLayer

    def downscale(self, size: IntVec2D) -> IntVec2D:
        strides = self.strides if self.strides is not None else self.pool_size
        return IntVec2D((size.x + strides.x - 1) // strides.x, (size.y + strides.y - 1) // strides.y)

    def downscale_factor(self, factor: IntVec2D) -> IntVec2D:
        strides = self.strides if self.strides is not None else self.pool_size
        return IntVec2D(factor.x * strides.x, factor.y * strides.y)

    pool_size: IntVec2D = field(default_factory=lambda: IntVec2D(2, 2))
    strides: Optional[IntVec2D] = field(default=None)

    padding: str = "same"
コード例 #12
0
 def test_dilated_block_architecture(self):
     trainer_params = uw3_trainer_params()
     trainer_params.scenario.model.layers = [
         Conv2DLayerParams(filters=10),
         MaxPool2DLayerParams(strides=IntVec2D(2, 2)),
         DilatedBlockLayerParams(filters=10),
         DilatedBlockLayerParams(filters=10),
         Conv2DLayerParams(filters=10),
     ]
     post_init(trainer_params)
     cmd_line_trainer_params = parse_args(
         ["--network", "conv=10,pool=2x2:2x2,db=10:2,db=10:2,conv=10"])
     self.assertDictEqual(trainer_params.scenario.model.to_dict(),
                          cmd_line_trainer_params.scenario.model.to_dict())
     cmd_line_trainer_params = parse_args([
         "--model.layers",
         "Conv",
         "Pool",
         "DilatedBlock",
         "DilatedBlock",
         "Conv",
         "--model.layers.0.filters",
         "10",
         "--model.layers.1.strides",
         "2",
         "2",
         "--model.layers.2.filters",
         "10",
         "--model.layers.3.filters",
         "10",
         "--model.layers.4.filters",
         "10",
     ])
     self.assertDictEqual(trainer_params.scenario.model.to_dict(),
                          cmd_line_trainer_params.scenario.model.to_dict())
     with tempfile.TemporaryDirectory() as d:
         trainer_params.output_dir = d
         main(trainer_params)
コード例 #13
0
 def downscale_factor(self, factor: IntVec2D) -> IntVec2D:
     strides = self.strides if self.strides is not None else self.pool_size
     return IntVec2D(factor.x * strides.x, factor.y * strides.y)
コード例 #14
0
 def downscale(self, size: IntVec2D) -> IntVec2D:
     strides = self.real_strides()
     return IntVec2D((size.x + strides.x - 1) // strides.x,
                     (size.y + strides.y - 1) // strides.y)
コード例 #15
0
 def downscale_factor(self, factor: IntVec2D) -> IntVec2D:
     strides = self.real_strides()
     return IntVec2D(factor.x * strides.x, factor.y * strides.y)
コード例 #16
0
 def downscale(self, size: IntVec2D) -> IntVec2D:
     strides = self.strides if self.strides is not None else self.pool_size
     return IntVec2D((size.x + strides.x - 1) // strides.x,
                     (size.y + strides.y - 1) // strides.y)
コード例 #17
0
 def compute_downscale_factor(self) -> IntVec2D:
     factor = IntVec2D(1, 1)
     for layer in self.layers:
         factor = layer.downscale_factor(factor)
     return factor
コード例 #18
0
 def downscale(self, size: IntVec2D) -> IntVec2D:
     return IntVec2D((size.x + self.strides.x - 1) // self.strides.x, (size.y + self.strides.y - 1) // self.strides.y)
コード例 #19
0
 def downscale_factor(self, factor: IntVec2D) -> IntVec2D:
     return IntVec2D(factor.x * self.strides.x, factor.y * self.strides.y)
コード例 #20
0
 def downscale(self, size: IntVec2D) -> IntVec2D:
     return IntVec2D(size.x * self.strides.x, size.y * self.strides.y)