コード例 #1
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--checkpoints', nargs='+', type=str, required=True)
    parser.add_argument('--dry_run', action='store_true')

    args = parser.parse_args()

    for ckpt in tqdm(glob_all(args.checkpoints)):
        ckpt = os.path.splitext(ckpt)[0]
        Checkpoint(ckpt, dry_run=args.dry_run)
コード例 #2
0
    def __init__(self, checkpoint=None, text_postproc=None, data_preproc=None, codec=None, network=None,
                 batch_size=1, processes=1,
                 auto_update_checkpoints=True,
                 with_gt=False,
                 ):
        """ Predicting a dataset based on a trained model

        Parameters
        ----------
        checkpoint : str, optional
            filepath of the checkpoint of the network to load, alternatively you can directly use a loaded `network`
        text_postproc : TextProcessor, optional
            text processor to be applied on the predicted sentence for the final output.
            If loaded from a checkpoint the text processor will be loaded from it.
        data_preproc : DataProcessor, optional
            data processor (must be the same as of the trained model) to be applied to the input image.
            If loaded from a checkpoint the text processor will be loaded from it.
        codec : Codec, optional
            Codec of the deep net to use for decoding. This parameter is only required if a custom codec is used,
            or a `network` has been provided instead of a `checkpoint`
        network : ModelInterface, optional
            DNN instance to used. Alternatively you can provide a `checkpoint` to load a network.
        batch_size : int, optional
            Batch size to use for prediction
        processes : int, optional
            The number of processes to use for prediction
        auto_update_checkpoints : bool, optional
            Update old models automatically (this will change the checkpoint files)
        with_gt : bool, optional
            The prediction will also output the ground truth if available else None
        """
        self.network = network
        self.checkpoint = checkpoint
        self.processes = processes
        self.auto_update_checkpoints = auto_update_checkpoints
        self.with_gt = with_gt

        if checkpoint:
            if network:
                raise Exception("Either a checkpoint or a network can be provided")

            ckpt = Checkpoint(checkpoint, auto_update=self.auto_update_checkpoints)
            self.checkpoint = ckpt.ckpt_path
            checkpoint_params = ckpt.checkpoint
            self.model_params = checkpoint_params.model
            self.codec = codec if codec else Codec(self.model_params.codec.charset)

            self.network_params = self.model_params.network
            backend = create_backend_from_proto(self.network_params, restore=self.checkpoint, processes=processes)
            self.text_postproc = text_postproc if text_postproc else text_processor_from_proto(self.model_params.text_postprocessor, "post")
            self.data_preproc = data_preproc if data_preproc else data_processor_from_proto(self.model_params.data_preprocessor)
            self.network = backend.create_net(
                dataset=None,
                codec=self.codec,
                restore=self.checkpoint, weights=None, graph_type="predict", batch_size=batch_size)
        elif network:
            self.codec = codec
            self.model_params = None
            self.network_params = network.network_proto
            self.text_postproc = text_postproc
            self.data_preproc = data_preproc
            if not codec:
                raise Exception("A codec is required if preloaded network is used.")
        else:
            raise Exception("Either a checkpoint or a existing backend must be provided")

        self.out_to_in_trans = OutputToInputTransformer(self.data_preproc, self.network)
コード例 #3
0
ファイル: trainer.py プロジェクト: liu4lin/calamari
    def train(self, auto_compute_codec=False, progress_bar=False):
        """ Launch the training

        Parameters
        ----------
        auto_compute_codec : bool
            Compute the codec automatically based on the provided ground truth.
            Else provide a codec using a whitelist (faster).

        progress_bar : bool
            Show or hide any progress bar

        """
        checkpoint_params = self.checkpoint_params

        train_start_time = time.time() + self.checkpoint_params.total_time

        # load training dataset
        if self.preload_training:
            self.dataset.preload(processes=checkpoint_params.processes,
                                 progress_bar=progress_bar)

        # load validation dataset
        if self.validation_dataset and self.preload_validation:
            self.validation_dataset.preload(
                processes=checkpoint_params.processes,
                progress_bar=progress_bar)

        # compute the codec
        if self.codec:
            codec = self.codec
        else:
            if len(self.codec_whitelist) == 0 or auto_compute_codec:
                codec = Codec.from_input_dataset(
                    [self.dataset, self.validation_dataset],
                    whitelist=self.codec_whitelist,
                    progress_bar=progress_bar)
            else:
                codec = Codec.from_texts([], whitelist=self.codec_whitelist)

        # create backend
        network_params = checkpoint_params.model.network
        network_params.features = checkpoint_params.model.line_height
        network_params.classes = len(codec)
        if self.weights:
            # if we load the weights, take care of codec changes as-well
            ckpt = Checkpoint(self.weights + '.json',
                              auto_update=self.auto_update_checkpoints)
            restore_checkpoint_params = ckpt.checkpoint
            restore_model_params = restore_checkpoint_params.model

            # checks
            if checkpoint_params.model.line_height != network_params.features:
                raise Exception(
                    "The model to restore has a line height of {} but a line height of {} is requested"
                    .format(network_params.features,
                            checkpoint_params.model.line_height))

            # create codec of the same type
            restore_codec = codec.__class__(restore_model_params.codec.charset)
            # the codec changes as tuple (deletions/insertions), and the new codec is the changed old one
            codec_changes = restore_codec.align(codec)
            codec = restore_codec
            print("Codec changes: {} deletions, {} appends".format(
                len(codec_changes[0]), len(codec_changes[1])))
            # The actual weight/bias matrix will be changed after loading the old weights
            if all([c == 0 for c in codec_changes]):
                codec_changes = None  # No codec changes
        else:
            codec_changes = None

        # store the new codec
        checkpoint_params.model.codec.charset[:] = codec.charset
        print("CODEC: {}".format(codec.charset))

        backend = create_backend_from_proto(
            network_params,
            weights=self.weights,
        )
        train_net = backend.create_net(self.dataset,
                                       codec,
                                       restore=None,
                                       weights=self.weights,
                                       graph_type="train",
                                       batch_size=checkpoint_params.batch_size)
        test_net = backend.create_net(self.validation_dataset,
                                      codec,
                                      restore=None,
                                      weights=self.weights,
                                      graph_type="test",
                                      batch_size=checkpoint_params.batch_size)
        if codec_changes:
            # only required on one net, since the other shares the same variables
            train_net.realign_model_labels(*codec_changes)

        train_net.prepare()
        test_net.prepare()

        if checkpoint_params.current_stage == 0:
            self._run_train(train_net, test_net, codec, train_start_time,
                            progress_bar)

        if checkpoint_params.data_aug_retrain_on_original and self.dataset.data_augmenter and self.dataset.data_augmentation_amount > 0:
            print("Starting training on original data only")
            if checkpoint_params.current_stage == 0:
                checkpoint_params.current_stage = 1
                checkpoint_params.iter = 0
                checkpoint_params.early_stopping_best_at_iter = 0
                checkpoint_params.early_stopping_best_cur_nbest = 0
                checkpoint_params.early_stopping_best_accuracy = 0

            self.dataset.generate_only_non_augmented = True  # this is the important line!
            train_net.prepare()
            test_net.prepare()
            self._run_train(train_net, test_net, codec, train_start_time,
                            progress_bar)

        train_net.prepare()  # reset the state
        test_net.prepare()  # to prevent blocking of tensorflow on shutdown
コード例 #4
0
    def train(self, progress_bar=False):
        """ Launch the training

        Parameters
        ----------
        progress_bar : bool
            Show or hide any progress bar

        """
        checkpoint_params = self.checkpoint_params

        train_start_time = time.time() + self.checkpoint_params.total_time

        self.dataset.load_samples(processes=1, progress_bar=progress_bar)
        datas, txts = self.dataset.train_samples(
            skip_empty=checkpoint_params.skip_invalid_gt)
        if len(datas) == 0:
            raise Exception(
                "Empty dataset is not allowed. Check if the data is at the correct location"
            )

        if self.validation_dataset:
            self.validation_dataset.load_samples(processes=1,
                                                 progress_bar=progress_bar)
            validation_datas, validation_txts = self.validation_dataset.train_samples(
                skip_empty=checkpoint_params.skip_invalid_gt)
            if len(validation_datas) == 0:
                raise Exception(
                    "Validation dataset is empty. Provide valid validation data for early stopping."
                )
        else:
            validation_datas, validation_txts = [], []

        # preprocessing steps
        texts = self.txt_preproc.apply(txts,
                                       processes=checkpoint_params.processes,
                                       progress_bar=progress_bar)
        datas, params = [
            list(a) for a in zip(
                *self.data_preproc.apply(datas,
                                         processes=checkpoint_params.processes,
                                         progress_bar=progress_bar))
        ]
        validation_txts = self.txt_preproc.apply(
            validation_txts,
            processes=checkpoint_params.processes,
            progress_bar=progress_bar)
        validation_data_params = self.data_preproc.apply(
            validation_datas,
            processes=checkpoint_params.processes,
            progress_bar=progress_bar)

        # compute the codec
        codec = self.codec if self.codec else Codec.from_texts(
            texts, whitelist=self.codec_whitelist)

        # store original data in case data augmentation is used with a second step
        original_texts = texts
        original_datas = datas

        # data augmentation on preprocessed data
        if self.data_augmenter:
            datas, texts = self.data_augmenter.augment_datas(
                datas,
                texts,
                n_augmentations=self.n_augmentations,
                processes=checkpoint_params.processes,
                progress_bar=progress_bar)

            # TODO: validation data augmentation
            # validation_datas, validation_txts = self.data_augmenter.augment_datas(validation_datas, validation_txts, n_augmentations=0,
            #                                                  processes=checkpoint_params.processes, progress_bar=progress_bar)

        # create backend
        network_params = checkpoint_params.model.network
        network_params.features = checkpoint_params.model.line_height
        network_params.classes = len(codec)
        if self.weights:
            # if we load the weights, take care of codec changes as-well
            ckpt = Checkpoint(self.weights + '.json',
                              auto_update=self.auto_update_checkpoints)
            restore_checkpoint_params = ckpt.checkpoint
            restore_model_params = restore_checkpoint_params.model

            # checks
            if checkpoint_params.model.line_height != network_params.features:
                raise Exception(
                    "The model to restore has a line height of {} but a line height of {} is requested"
                    .format(network_params.features,
                            checkpoint_params.model.line_height))

            # create codec of the same type
            restore_codec = codec.__class__(restore_model_params.codec.charset)
            # the codec changes as tuple (deletions/insertions), and the new codec is the changed old one
            codec_changes = restore_codec.align(codec)
            codec = restore_codec
            print("Codec changes: {} deletions, {} appends".format(
                len(codec_changes[0]), len(codec_changes[1])))
            # The actual weight/bias matrix will be changed after loading the old weights
            if all([c == 0 for c in codec_changes]):
                codec_changes = None  # No codec changes
        else:
            codec_changes = None

        # store the new codec
        checkpoint_params.model.codec.charset[:] = codec.charset
        print("CODEC: {}".format(codec.charset))

        # compute the labels with (new/current) codec
        labels = [codec.encode(txt) for txt in texts]

        backend = create_backend_from_proto(
            network_params,
            weights=self.weights,
        )
        train_net = backend.create_net(restore=None,
                                       weights=self.weights,
                                       graph_type="train",
                                       batch_size=checkpoint_params.batch_size)
        test_net = backend.create_net(restore=None,
                                      weights=self.weights,
                                      graph_type="test",
                                      batch_size=checkpoint_params.batch_size)
        train_net.set_data(datas, labels)
        test_net.set_data(validation_datas, validation_txts)
        if codec_changes:
            # only required on one net, since the other shares the same variables
            train_net.realign_model_labels(*codec_changes)

        train_net.prepare()
        test_net.prepare()

        if checkpoint_params.current_stage == 0:
            self._run_train(train_net, test_net, codec, validation_data_params,
                            train_start_time, progress_bar)

        if checkpoint_params.data_aug_retrain_on_original and self.data_augmenter and self.n_augmentations > 0:
            print("Starting training on original data only")
            if checkpoint_params.current_stage == 0:
                checkpoint_params.current_stage = 1
                checkpoint_params.iter = 0
                checkpoint_params.early_stopping_best_at_iter = 0
                checkpoint_params.early_stopping_best_cur_nbest = 0
                checkpoint_params.early_stopping_best_accuracy = 0

            train_net.set_data(original_datas,
                               [codec.encode(txt) for txt in original_texts])
            test_net.set_data(validation_datas, validation_txts)
            train_net.prepare()
            test_net.prepare()
            self._run_train(train_net, test_net, codec, validation_data_params,
                            train_start_time, progress_bar)
コード例 #5
0
ファイル: trainer.py プロジェクト: hudanursener/MedipolCodes
    def train(self, auto_compute_codec=False, progress_bar=False, training_callback=ConsoleTrainingCallback()):
        """ Launch the training

        Parameters
        ----------
        auto_compute_codec : bool
            Compute the codec automatically based on the provided ground truth.
            Else provide a codec using a whitelist (faster).

        progress_bar : bool
            Show or hide any progress bar

        training_callback : TrainingCallback
            Callback for the training process (e.g., for displaying the current cer, loss in the console)

        """
        with ExitStackWithPop() as exit_stack:
            checkpoint_params = self.checkpoint_params

            train_start_time = time.time() + self.checkpoint_params.total_time

            exit_stack.enter_context(self.dataset)
            if self.validation_dataset:
                exit_stack.enter_context(self.validation_dataset)

            # load training dataset
            if self.preload_training:
                new_dataset = self.dataset.to_raw_input_dataset(processes=checkpoint_params.processes, progress_bar=progress_bar)
                exit_stack.pop(self.dataset)
                self.dataset = new_dataset
                exit_stack.enter_context(self.dataset)

            # load validation dataset
            if self.validation_dataset and self.preload_validation:
                new_dataset = self.validation_dataset.to_raw_input_dataset(processes=checkpoint_params.processes, progress_bar=progress_bar)
                exit_stack.pop(self.validation_dataset)
                self.validation_dataset = new_dataset
                exit_stack.enter_context(self.validation_dataset)

            # compute the codec
            if self.codec:
                codec = self.codec
            else:
                if len(self.codec_whitelist) == 0 or auto_compute_codec:
                    codec = Codec.from_input_dataset([self.dataset, self.validation_dataset],
                                                     whitelist=self.codec_whitelist, progress_bar=progress_bar)
                else:
                    codec = Codec.from_texts([], whitelist=self.codec_whitelist)

            # create backend
            network_params = checkpoint_params.model.network
            network_params.features = checkpoint_params.model.line_height
            if self.weights:
                # if we load the weights, take care of codec changes as-well
                ckpt = Checkpoint(self.weights + '.json', auto_update=self.auto_update_checkpoints)
                restore_checkpoint_params = ckpt.checkpoint
                restore_model_params = restore_checkpoint_params.model

                # checks
                if checkpoint_params.model.line_height != network_params.features:
                    raise Exception("The model to restore has a line height of {} but a line height of {} is requested".format(
                        network_params.features, checkpoint_params.model.line_height
                    ))

                # create codec of the same type
                restore_codec = codec.__class__(restore_model_params.codec.charset)

                # the codec changes as tuple (deletions/insertions), and the new codec is the changed old one
                codec_changes = restore_codec.align(codec, shrink=not self.keep_loaded_codec)
                codec = restore_codec
                print("Codec changes: {} deletions, {} appends".format(len(codec_changes[0]), len(codec_changes[1])))
                # The actual weight/bias matrix will be changed after loading the old weights
                if all([c == 0 for c in codec_changes]):
                    codec_changes = None  # No codec changes
            else:
                codec_changes = None

            # store the new codec
            network_params.classes = len(codec)
            checkpoint_params.model.codec.charset[:] = codec.charset
            print("CODEC: {}".format(codec.charset))

            backend = create_backend_from_checkpoint(
                checkpoint_params=checkpoint_params,
                processes=checkpoint_params.processes,
            )
            train_net = backend.create_net(codec, graph_type="train",
                                           checkpoint_to_load=Checkpoint(self.weights) if self.weights else None,
                                           batch_size=checkpoint_params.batch_size, codec_changes=codec_changes)

            if checkpoint_params.current_stage == 0:
                self._run_train(train_net, train_start_time, progress_bar, self.dataset, self.validation_dataset, training_callback)

            if checkpoint_params.data_aug_retrain_on_original and self.data_augmenter and self.n_augmentations != 0:
                print("Starting training on original data only")
                if checkpoint_params.current_stage == 0:
                    checkpoint_params.current_stage = 1
                    checkpoint_params.iter = 0
                    checkpoint_params.early_stopping_best_at_iter = 0
                    checkpoint_params.early_stopping_best_cur_nbest = 0
                    checkpoint_params.early_stopping_best_accuracy = 0

                self.dataset.generate_only_non_augmented = True  # this is the important line!
                self._run_train(train_net, train_start_time, progress_bar, self.dataset, self.validation_dataset, training_callback)