def get_age_grouped_population(): ags = list(make_age_groups()) df = get_population_for_area() df = pd.DataFrame(df.sum(axis=1), columns=['count']) df['ag'] = df.index.map(lambda x: ags[x]) df = df.groupby('ag')['count'].sum() return df
def simulate_progress(variables): population = get_population_for_area().sum(axis=1).sum() days = np.arange(0, variables['simulation_days']) r0 = variables['r0'] mean_duration = variables['infectious_days'] initial_recovered = variables['initial_recovered'] initial_infected = variables['initial_infected'] recovery_rate = 1 / mean_duration infection_rate = r0 * recovery_rate model = sir(infection_rate, recovery_rate, population) initial_suspectible = population - initial_infected - initial_recovered solution = scipy.integrate.solve_ivp( model, days[[0, -1]], [initial_suspectible, initial_infected], t_eval=days, dense_output=True) suspectible, infected = solution.y recovered = population - suspectible - infected return pd.DataFrame(index=days, data=dict(suspectible=suspectible, infected=infected, recovered=recovered))
def render_region_info(): from babel.numbers import format_number pop = get_population_for_area().sum().sum() region_card = dbc.CardBody(html.Ul([ html.Li([ html.Strong('%s: ' % _("Region Name")), html.Span(get_variable('area_name_long')) ]), html.Li([ html.Strong('%s: ' % _("Region Population")), html.Span(format_number(pop, locale=get_active_locale())), ]), ]), className="px-5"), return region_card
def simulate_individuals(variables, step_callback=None, callback_day_interval=1): pc = PerfCounter() age_structure = get_population_for_area().sum(axis=1) ipc = get_initial_population_condition() age_to_group = make_age_groups() age_groups = list(np.unique(age_to_group)) pop_params = dict( age_structure=age_structure, contacts_per_day=get_contacts_per_day(), initial_population_condition=ipc, age_groups=dict( labels=age_groups, age_indices=[age_groups.index(x) for x in age_to_group]), imported_infection_ages=variables['imported_infection_ages'], ) df = get_contacts_per_day() hc_params = dict(hospital_beds=variables['hospital_beds'], icu_units=variables['icu_units']) disease_params = create_disease_params(variables) context = model.Context(population_params=pop_params, healthcare_params=hc_params, disease_params=disease_params, start_date=variables['start_date'], random_seed=variables['random_seed']) start_date = date.fromisoformat(variables['start_date']) ivs = get_active_interventions(variables) for iv in ivs: context.add_intervention(iv) pc.measure() days = variables['simulation_days'] date_index = pd.date_range(start_date, periods=days) df = pd.DataFrame( columns=POP_ATTRS + STATE_ATTRS + EXPOSURES_ATTRS + ['us_per_infected'], index=date_index, ) ag_array = np.empty((days, len(POP_ATTRS), len(age_groups)), dtype='i') for day in range(days): s = context.generate_state() today_date = (start_date + timedelta(days=day)).isoformat() for idx, attr in enumerate(POP_ATTRS): ag_array[day, idx, :] = s[attr] rec = {attr: s[attr].sum() for attr in POP_ATTRS} for state_attr in STATE_ATTRS: rec[state_attr] = s[state_attr] for place, nr in s['daily_contacts'].items(): key = 'exposures_%s' % place assert key in df.columns rec[key] = nr rec['us_per_infected'] = pc.measure( ) * 1000 / rec['infected'] if rec['infected'] else 0 if False: st = '\n%-15s' % today_date for ag in age_groups: st += '%8s' % ag print(st) for attr in ('all_detected', 'in_ward', 'dead', 'cum_icu'): st = '%-15s' % attr t = s[attr].sum() for val in s[attr]: st += '%8.2f' % ((val / t) * 100) print(st) if False: dead = context.get_population_stats('dead') all_infected = context.get_population_stats('all_infected') detected = context.get_population_stats('all_detected') age_groups = pd.interval_range(0, 80, freq=10, closed='left') age_groups = age_groups.append( pd.Index([pd.Interval(80, 100, closed='left')])) s = pd.Series(dead) dead_by_age = s.groupby(pd.cut(s.index, age_groups)).sum() dead_by_age.name = 'dead' s = pd.Series(all_infected) infected_by_age = s.groupby(pd.cut(s.index, age_groups)).sum() infected_by_age.scenario_name = 'infected' s = pd.Series(detected) detected_by_age = s.groupby(pd.cut(s.index, age_groups)).sum() detected_by_age.name = 'detected' print(dead_by_age / sum(dead_by_age) * 100) print(infected_by_age / sum(infected_by_age) * 100) print(detected_by_age / sum(detected_by_age) * 100) #zdf = pd.DataFrame(dead_by_age) #zdf['infected'] = infected_by_age #zdf['ifr'] = zdf.dead.divide(zdf.infected.replace(0, np.inf)) * 100 #print(zdf) df.loc[today_date] = rec by_age_group = POP_ATTRS if step_callback is not None and (day % callback_day_interval == 0 or day == range(days) - 1): ret = step_callback(df) if not ret: raise ExecutionInterrupted() context.iterate() if False: import cProfile import pstats cProfile.runctx("context.iterate()", globals(), locals(), "profile.prof") s = pstats.Stats("profile.prof") s.strip_dirs().sort_stats("cumtime").print_stats() arr = ag_array.flatten() adf = pd.DataFrame(arr, index=pd.MultiIndex.from_product( [date_index, POP_ATTRS, age_groups], names=['date', 'attr', 'age_group']), columns=['pop']) adf = adf.unstack('attr').unstack('age_group') adf.columns = adf.columns.droplevel() return df, adf
def simulate_individuals(variables, step_callback=None): pc = PerfCounter() df = get_population_for_area().sum(axis=1) ages = df.index.values counts = df.values avg_contacts_per_day = get_physical_contacts_for_country() hc_cap = (variables['hospital_beds'], variables['icu_units']) max_age = max(ages) age_counts = np.array(np.zeros(max_age + 1, dtype=np.int32)) for age, count in zip(ages, counts): age_counts[age] = count people = create_population(age_counts) avg_contacts = np.array(avg_contacts_per_day.values, dtype=np.float32) assert avg_contacts.size == max_age + 1 pop = Population(age_counts, avg_contacts) hc = HealthcareSystem(hc_cap[0], hc_cap[1]) sevvar = variables['p_severe'] sev_arr = np.ndarray((len(sevvar), 2), dtype=np.float32) for idx, (age, sev) in enumerate(sevvar): sev_arr[idx] = (age, sev / 100) disease = Disease( p_infection=variables['p_infection'] / 100, p_asymptomatic=variables['p_asymptomatic'] / 100, p_severe=sev_arr, p_critical=variables['p_critical'] / 100, p_hospital_death=variables['p_hospital_death'] / 100, p_icu_death=variables['p_icu_death'] / 100, p_hospital_death_no_beds=variables['p_hospital_death_no_beds'] / 100, p_icu_death_no_beds=variables['p_icu_death_no_beds'] / 100, ) context = Context(pop, people, hc, disease, start_date=variables['start_date']) start_date = date.fromisoformat(variables['start_date']) ivs = nb.typed.List() for iv in variables['interventions']: iv_id = iv[0] iv_date = iv[1] if len(iv) > 2: iv_value = iv[2] else: iv_value = None # Extremely awkward, but Numba poses some limitations. ivs.append(make_iv(context, iv_id, iv_date, value=iv_value)) context.interventions = ivs pc.display('after init') days = variables['simulation_days'] df = pd.DataFrame(columns=POP_ATTRS + STATE_ATTRS, index=pd.date_range(start_date, periods=days)) for day in range(days): state = context.generate_state() rec = {attr: sum(getattr(state, attr)) for attr in POP_ATTRS} rec['hospital_beds'] = state.available_hospital_beds rec['icu_units'] = state.available_icu_units rec['r'] = state.r rec['exposed_per_day'] = state.exposed_per_day rec['tests_run_per_day'] = state.tests_run_per_day rec['sim_time_ms'] = pc.measure() d = start_date + timedelta(days=day) df.loc[d] = rec if step_callback is not None: ret = step_callback(df) if not ret: raise ExecutionInterrupted() context.iterate() return df
def simulate_individuals(variables, step_callback=None): pc = PerfCounter() df = get_population_for_area().sum(axis=1) ages = df.index.values counts = df.values avg_contacts_per_day = get_contacts_for_country() hc_cap = (variables['hospital_beds'], variables['icu_units']) max_age = max(ages) age_counts = np.array(np.zeros(max_age + 1, dtype=np.int32)) for age, count in zip(ages, counts): age_counts[age] = count pop = model.Population(age_counts, list(avg_contacts_per_day.items())) hc = model.HealthcareSystem( beds=hc_cap[0], icu_units=hc_cap[1], p_detected_anyway=variables['p_detected_anyway'] / 100) disease = create_disease(variables) context = model.Context(pop, hc, disease, start_date=variables['start_date'], random_seed=variables['random_seed']) start_date = date.fromisoformat(variables['start_date']) for iv in variables['interventions']: d = (date.fromisoformat(iv[1]) - start_date).days if len(iv) > 2: val = iv[2] else: val = 0 context.add_intervention(d, iv[0], val) pc.measure() days = variables['simulation_days'] df = pd.DataFrame(columns=POP_ATTRS + STATE_ATTRS + ['us_per_infected'], index=pd.date_range(start_date, periods=days)) for day in range(days): s = context.generate_state() rec = {attr: sum(s[attr]) for attr in POP_ATTRS} for state_attr in STATE_ATTRS: rec[state_attr] = s[state_attr] rec['us_per_infected'] = pc.measure( ) * 1000 / rec['infected'] if rec['infected'] else 0 """ dead = context.get_population_stats('dead') all_infected = context.get_population_stats('all_infected') age_groups = pd.interval_range(0, 100, freq=10, closed='left') s = pd.Series(dead) dead_by_age = s.groupby(pd.cut(s.index, age_groups)).sum() dead_by_age.name = 'dead' s = pd.Series(all_infected) infected_by_age = s.groupby(pd.cut(s.index, age_groups)).sum() zdf = pd.DataFrame(dead_by_age) zdf['infected'] = infected_by_age zdf['ifr'] = zdf.dead.divide(zdf.infected.replace(0, np.inf)) * 100 print(zdf) """ d = start_date + timedelta(days=day) df.loc[d] = rec if step_callback is not None: ret = step_callback(df) if not ret: raise ExecutionInterrupted() context.iterate() if False: import cProfile import pstats cProfile.runctx("context.iterate()", globals(), locals(), "profile.prof") s = pstats.Stats("profile.prof") s.strip_dirs().sort_stats("time").print_stats() return df
def simulate_individuals(variables, step_callback=None): pc = PerfCounter() age_structure = get_population_for_area().sum(axis=1) pop_params = dict( age_structure=age_structure, contacts_per_day=get_contacts_per_day(), ) hc_params = dict(hospital_beds=variables['hospital_beds'], icu_units=variables['icu_units']) disease_params = create_disease_params(variables) context = model.Context( population_params=pop_params, healthcare_params=hc_params, disease_params=disease_params, start_date=variables['start_date'], random_seed=variables['random_seed'] ) start_date = date.fromisoformat(variables['start_date']) for iv in variables['interventions']: d = (date.fromisoformat(iv[1]) - start_date).days if len(iv) > 2: val = iv[2] else: val = 0 context.add_intervention(d, iv[0], val) pc.measure() days = variables['simulation_days'] df = pd.DataFrame( columns=POP_ATTRS + STATE_ATTRS + ['us_per_infected'], index=pd.date_range(start_date, periods=days) ) for day in range(days): s = context.generate_state() rec = {attr: sum(s[attr]) for attr in POP_ATTRS} for state_attr in STATE_ATTRS: rec[state_attr] = s[state_attr] rec['us_per_infected'] = pc.measure() * 1000 / rec['infected'] if rec['infected'] else 0 if False: dead = context.get_population_stats('dead') all_infected = context.get_population_stats('all_infected') age_groups = pd.interval_range(0, 100, freq=10, closed='left') s = pd.Series(dead) dead_by_age = s.groupby(pd.cut(s.index, age_groups)).sum() dead_by_age.name = 'dead' s = pd.Series(all_infected) infected_by_age = s.groupby(pd.cut(s.index, age_groups)).sum() print(infected_by_age) zdf = pd.DataFrame(dead_by_age) zdf['infected'] = infected_by_age zdf['ifr'] = zdf.dead.divide(zdf.infected.replace(0, np.inf)) * 100 #print(zdf) d = start_date + timedelta(days=day) df.loc[d] = rec if step_callback is not None: ret = step_callback(df) if not ret: raise ExecutionInterrupted() context.iterate() if False: import cProfile import pstats cProfile.runctx("context.iterate()", globals(), locals(), "profile.prof") s = pstats.Stats("profile.prof") s.strip_dirs().sort_stats("time").print_stats() return df