def read_primary_dataset(variq,dataset,lat_bounds,lon_bounds): data,lats,lons = df.readFiles(variq,dataset,monthlychoice) datar,lats,lons = df.getRegion(data,lats,lons,lat_bounds,lon_bounds) print('\nOur dataset: ',dataset,' is shaped',data.shape) return datar,lats,lons for i in range(len(variq)): ### Read in data for selected region lat_bounds,lon_bounds = UT.regions(reg_name) dataall,lats,lons = read_primary_dataset(variq[i],dataset, lat_bounds,lon_bounds) ### Remove ensemble mean if rm_ensemble_mean == True: data= dSS.remove_ensemble_mean(dataall) print('*Removed ensemble mean*') elif rm_ensemble_mean == False: data = dataall ### Calculate ensemble mean meandata = np.nanmean(data,axis=0) del data #save storage ### Composite over selected period (x2) if monthlychoice == 'DJF': years = np.arange(meandata.shape[0]) + 1921 else: years = np.arange(meandata.shape[0]) + 1920 length = years.shape[0]//2
test_output_mat = np.empty( (np.max(expList) + 1, foldsN, 180 * int( np.round( np.shape(data_all)[0] * (1.0 - segment_data_factor))))) for exp in expList: # get the data together data, data_obs, = data_all, data_obs_all, if rm_annual_mean == True: data, data_obs = dSS.remove_annual_mean( data, data_obs, lats, lons, lats_obs, lons_obs) print('*Removed annual mean*') if rm_ensemble_mean == True: datae = dSS.remove_ensemble_mean(data) print('*Removed ensemble mean*') if rm_standard_dev == True: data = dSS.rm_standard_dev(datae, window) print('*Removed standard deviation*') if land_only == True: data, data_obs = dSS.remove_ocean( data, data_obs, lat_bounds, lon_bounds) if ocean_only == True: data, data_obs = dSS.remove_land( data, data_obs, lat_bounds, lon_bounds) # ### Loop over folds