コード例 #1
0
ファイル: test.py プロジェクト: Sle3pingForest/M1_IR
def showAffectation(color_center, centre):
    max_color = max_reading(color_center)
    fig = plt.figure()
    for i in range(0,len(color_center) ):
        if i < 6:
            plt.scatter(i, 0, s=800, marker='o', c= t255to01(centre[i],max_color) )
        for j in range (0 , len(color_center[i])):
            plt.scatter(i, 10 + j* 5, s=800, marker='o', c=  t255to01(color_center[i][j], max_color) )
    
    plt.show()
コード例 #2
0
ファイル: test.py プロジェクト: Sle3pingForest/M1_IR
def test_rgb_3D(data):
        
    x, y, color, c, max_color = donnees(data)
    Fig = plt.figure()
    ax = plt.axes(projection='3d')   
    for s, side in enumerate(data):
        for f, (r,g,b) in enumerate(side):
            ax.scatter3D(data[s][f][0], data[s][f][1], data[s][f][2], c=t255to01(data[s][f],max_color), cmap=data)
 
    plt.show()
コード例 #3
0
ファイル: test.py プロジェクト: Sle3pingForest/M1_IR
def draw_rgb_debut(data):
    x, y, color, c, max_color = donnees(data)
   
    n = 9
    m = 6
    #color_center = [[] * 54] * 6
    color_center = []
    for k in range(0,6):
      color_center.append([])
   
    cccc = []
    
    compteur = 0

    print " JESUIS CENTRE ", c
    
    for s, side in enumerate(data):
        for f, (r,g,b) in enumerate(side):
	  indice = 0
	  min_color = max_color
	  size = len(c)
	  for i in range(0,size):
	    rr = abs(r - c[i][0])
	    gg = abs(g - c[i][1])
	    bb = abs(b - c[i][2])
	    if (min_color > ((rr +gg+bb)/3) ):
	     min_color = (rr +gg+bb)/3
	     indice = i
	  #print indice
	  color_center[indice].append( [r,g,b] )
	   #print ' JESUIS FACE ' , s , ' EN FACET ', f , ' JAJOUTE DANS ' , indice , ' COMPTEUR ' , compteur
	   #print color_center[indice]



    nb_erreur = 0
    for i in range(0, len(color_center)):
        for j in range (0, len(color_center[i])):
            dedans = False
            for k in range(0, len(data[i])):
                if sameColor( color_center[i][j], data[i][k]):
                   dedans = True
            if dedans == False:
                nb_erreur += 1

    print float(nb_erreur)/54 *100 , "% d erreur  " ,   nb_erreur , "   sur " , 54

           
    for i in range(0,len(color_center) ):
        
      #print ' COULEUR SIDE ',  c[i], '  liste facet: ', color_center[i], '\n'
      tabColor = []
      for j in range (0 , len(color_center[i])):
            plt.scatter(i, 10 + j* 5, s=800, marker='o', c=  t255to01(color_center[i][j], max_color) )
            plt.scatter(i, 0, s=800, marker='o', c= t255to01(c[i],max_color) )
    """
    plt.scatter(x, y, s=800, marker='s', c=color)
    plt.title('Rubik\'s cube unfolding')
    plt.axis('off')
    plt.savefig('unfolding.png')
    """
    #showData([R1])
    
    tab_tri = repartition_egal(color_center, c, 9)
    fig = plt.figure()
    for i in range(0,len(tab_tri) ):
        
      #print ' COULEUR SIDE ',  c[i], '  liste facet: ', color_center[i], '\n'
      tabColor = []
      for j in range (0 , len(tab_tri[i])):
            plt.scatter(i, 10 + j* 5, s=800, marker='o', c=  t255to01(tab_tri[i][j], max_color) )
            plt.scatter(i, 0, s=800, marker='o', c= t255to01(c[i],max_color) )
    
    plt.show()    
コード例 #4
0
ファイル: test.py プロジェクト: Sle3pingForest/M1_IR
def test_hsv(data, data2 = []):

    x, y, color, c, max_color = donnees(data)

    centre = couleurCentre(data)
    centre_hsv = []
    tab_hsv = []
    tab_rgb, data_rgb = [], []
    #conversion centre rgb to hsv
    for i in range(0, len(centre)):
        color = t255to01(centre[i],max_color)
        #print "  couleur des donnees :  " , data[1][4] , "      couleur en format 0-1 : ", color
        centre_hsv.append( colorsys.rgb_to_hsv(color[0], color[1], color[2]) )
    #test sur toutes les facets
    
    data_hsv ,color_center, tab_rgb = [], [], []
    for i in range(0, len(data)):
        data_hsv.append([])
        color_center.append([])
        tab_hsv.append([])
        tab_rgb.append([])

    """
    Fig = plt.figure()
    ax = plt.axes(projection='3d') 
    """  
    for s, side in enumerate(data):
        for f, (r,g,b) in enumerate(side):
            data_hsv[s].append( colorsys.rgb_to_hsv( float(r)/max_color, float(g)/max_color, float(b)/max_color) )
            min_distance = 100000
            indice = 0
            for i in range(0, len(centre_hsv)):
                dist = distance_hsv(data_hsv[s][f], centre_hsv[i])
                if dist < min_distance:
                    min_distance = dist
                    indice = i
	    color_center[indice].append( [r,g,b] )
            tab_hsv[indice].append( data_hsv[s][f] )

    """
            ax.scatter3D(data_hsv[s][f][0], data_hsv[s][f][1], data_hsv[s][f][2], c=t255to01(data[s][f],max_color), cmap=data)
    """
    if len(data2) > 0:
        taux_erreur(data2, color_center)
        
    fig = plt.figure()
    for i in range(0,len(color_center) ):

      for j in range (0 , len(color_center[i])):
            plt.scatter(i, 10 + j* 5, s=800, marker='o', c=  rgb255to01(color_center[i][j], max_color) )
            plt.scatter(i, 0, s=800, marker='o', c= t255to01(centre[i],max_color) )

            
            
    tab_repar = repartition_egal(tab_hsv, centre_hsv, 9, False)
    
    fig = plt.figure()
    for i in range(0,len(tab_repar) ):

      for j in range (0 , len(tab_repar[i])):
          color = colorsys.hsv_to_rgb( tab_repar[i][j][0], tab_repar[i][j][1], tab_repar[i][j][2])
          plt.scatter(i, 10 + j* 5, s=800, marker='o', c=  color)
          plt.scatter(i, 0, s=800, marker='o', c= t255to01(centre[i],max_color) )
      
    plt.show()    
コード例 #5
0
ファイル: test.py プロジェクト: Sle3pingForest/M1_IR
def draw_diffRGB(data):
    x, y, color, c, max_color = donnees(data)
   
    n = 9
    m = 6
    c = couleurCentre(data)
    color_center = []
    for k in range(0,6):
      color_center.append([])
  
    """
    utilisation du filtre uniforme
    """
    for s, side in enumerate(data):
        for f, (r,g,b) in enumerate(side):
            if f != 4:
	        indice = 0
	        min_color = max_color
	        size = len(c)
          
                #compare avec chaque centre
	        for i in range(0,size):

                    #calcul la nouvelle nuance de chaque centre
                    color = [0,0,0]
                    for l in range(0,3):
                        color[l] = c[i][l] + diff[i][l]
                        
	            rr = abs(r - color[0])
	            gg = abs(g - color[1])
	            bb = abs(b - color[2])
	            if (min_color > ((rr +gg+bb)/3) ):
	                min_color = (rr +gg+bb)/3
	                indice = i
	        color_center[indice].append( [r,g,b] )
                
    nb_erreur = 0
    for i in range(0, len(color_center)):
        if ( len(color_center[i]) > 8):
            nb_erreur +=  len(color_center[i]) - 8

    print float(nb_erreur)/48 *100 , "% d erreur  " ,   nb_erreur , "   sur 48"
          
    #coeff couleur uniforme
    plt.figure(0)
    for i in range(0, len(c)):
        
        plt.scatter(i, 0, s=800, marker='s', c=t255to01(c[i], max_color))
        #decalage
        decalage = 5
        for j in range (0,len(color_center[i])):
             plt.scatter(i, decalage + j, s=800, marker='s', c=t255to01(color_center[i][j], max_color) )
          

    
    c = couleurCentre(data)

    """
    utilisation des filtres cote/coin
    """
    
    color_center = []
    for k in range(0,6):
      color_center.append([])
  

    for s, side in enumerate(data):
        for f, (r,g,b) in enumerate(side):
            if f != 4:
	        indice = 0
	        min_color = max_color
	        size = len(c)
                
	        for i in range(0,size):

                    color = [0,0,0]
                    for l in range(0,3):
                        if f%2 == 0:
                            color[l] = c[i][l] + diffCoin[i][l]
                        else:
                            color[l] = c[i][l] + diffCote[i][l]

	            rr = abs(r - color[0])
	            gg = abs(g - color[1])
	            bb = abs(b - color[2])
	            if (min_color > ((rr +gg+bb)/3)):
	                min_color = (rr +gg+bb)/3
	                indice = i
	        color_center[indice].append( [r,g,b] )


    nb_erreur = 0
    for i in range(0, len(color_center)):
        print color_center[i]
        if ( len(color_center[i]) > 8):
            nb_erreur +=  len(color_center[i]) - 8
    print float(nb_erreur)/48 *100 , "% d erreur  " ,   nb_erreur , "   sur 48"
    #coeff couleur uniforme
    plt.figure(1)
    for i in range(0, len(c)):
        
        plt.scatter(i, 0, s=800, marker='s', c=t255to01(c[i], max_color))
        #decalage
        decalage = 5
        for j in range (0,len(color_center[i])):
             plt.scatter(i, decalage + j, s=800, marker='s', c=t255to01(color_center[i][j], max_color) )
          
    
    
    plt.show()