コード例 #1
0
def test_2_random_vector_fields_as_deformations(get_figures=False):

    dec = 1
    passe_partout = 3

    omega = (15, 15)

    sigma_init = 4
    sigma_gaussian_filter = 2
    svf_zeros = gen_id.id_lagrangian(omega)
    svf_0 = gen.generate_random(omega,
                                parameters=(sigma_init, sigma_gaussian_filter))

    l_exp = lie_exp.LieExp()

    sdisp_0 = l_exp.scaling_and_squaring(svf_0)
    sdisp_0_inv = l_exp.scaling_and_squaring(-1 * svf_0)

    f_o_f_inv = cp.lagrangian_dot_lagrangian(sdisp_0,
                                             sdisp_0_inv,
                                             add_right=True)
    f_inv_o_f = cp.lagrangian_dot_lagrangian(sdisp_0_inv,
                                             sdisp_0,
                                             add_right=True)

    # results of a composition of 2 lagrangian must be a lagrangian zero field
    assert_array_almost_equal(f_o_f_inv[passe_partout:-passe_partout,
                                        passe_partout:-passe_partout, 0, 0, :],
                              svf_zeros[passe_partout:-passe_partout,
                                        passe_partout:-passe_partout, 0, 0, :],
                              decimal=dec)
    assert_array_almost_equal(f_inv_o_f[passe_partout:-passe_partout,
                                        passe_partout:-passe_partout, 0, 0, :],
                              svf_zeros[passe_partout:-passe_partout,
                                        passe_partout:-passe_partout, 0, 0, :],
                              decimal=dec)

    if get_figures:
        fields_at_the_window.see_field(sdisp_0, fig_tag=61)
        fields_at_the_window.see_field(
            sdisp_0_inv,
            fig_tag=61,
            input_color='r',
            title_input='2 displacement fields: f blue, g red')

        fields_at_the_window.see_field(sdisp_0, fig_tag=62)
        fields_at_the_window.see_field(sdisp_0_inv,
                                       fig_tag=62,
                                       input_color='r')
        fields_at_the_window.see_field(
            f_o_f_inv,
            fig_tag=62,
            input_color='g',
            title_input='composition (f o f^(-1)) in green')

        fields_at_the_window.see_field(sdisp_0, fig_tag=63)
        fields_at_the_window.see_field(sdisp_0_inv,
                                       fig_tag=63,
                                       input_color='r')
        fields_at_the_window.see_field(
            f_inv_o_f,
            fig_tag=63,
            input_color='g',
            title_input='composition (f^(-1) o f) in green')

    plt.show()
コード例 #2
0
            scale_factor = 1. / (np.max(omega) * 10)
            special = False
            hom_attributes = [2, scale_factor, 2, special]

            h_a, h_g = pgl2.get_random_hom_matrices(d=hom_attributes[0],
                                                    scale_factor=hom_attributes[1],
                                                    sigma=hom_attributes[2],
                                                    special=hom_attributes[3])

            svf_0 = gen.generate_from_projective_matrix(omega[::-1], h_a, structure='algebra')
            flow = gen.generate_from_projective_matrix(omega[::-1], h_g, structure='group')

        elif params['deformation_model'] == 'gauss':

            svf_0 = gen.generate_random(omega[::-1], 1, (20, 2))
            # svf_0 = svf_0[0:omega[0], 1:omega[1], ...]
            flow = l_exp.scaling_and_squaring(svf_0)

        else:
            raise IOError

        # save svf:
        with open(pfi_svf0, 'wb') as f:
            pickle.dump(svf_0, f)

        print('Shapes: ')
        print('shape svf {}'.format(svf_0.shape))
        print('shape flow {}'.format(flow.shape))
        print('shape image {}'.format(coronal_slice.shape))
コード例 #3
0
from calie.fields import generate_identities as gen_id
from calie.fields import generate as gen
from calie.fields import compose as cp

# Auxiliary vector fields function


def vf(t, x):
    global svf_0
    return list(cp.one_point_interpolation(svf_0, point=x, method='cubic'))


if __name__ == '__main__':

    # Generate the random field with the function input:
    svf_0 = gen.generate_random(omega=(20, 20), parameters=(4, 2))

    # Initialize the displacement field that will be computed using the integral curves.
    disp_0 = gen_id.id_eulerian_like(svf_0)

    # Start getting the figure:

    fig = plt.figure(num=1)
    ax = fig.add_subplot(111)

    # Plot vector field
    id_field = gen_id.id_eulerian_like(svf_0)

    input_field_copy = copy.deepcopy(svf_0)

    ax.quiver(id_field[..., 0, 0, 0],
コード例 #4
0
    dm1 = beta * linear.randomgen_linear_by_taste(1, 1,
                                                  [int(c / 2) for c in omega])
    m1 = scipy.linalg.expm(dm1)

    # generate SVF
    svf1 = gen.generate_from_matrix(omega, dm1, t=1, structure='algebra')
    flow1_ground = gen.generate_from_matrix(omega, m1, t=1, structure='group')

    quiver_3d(svf1, flow1_ground)

    plt.show(block=False)

    # --- Gaussian example

    # generate SVF
    svf1 = gen.generate_random(omega, 1, (1, 1))

    l_exp = lie_exp.LieExp()
    l_exp.s_i_o = 3
    flow1_ground = l_exp.gss_aei(svf1)

    quiver_3d(svf1, flow1_ground)

    plt.show(block=True)

    #
    #
    # fig = plt.figure()
    # ax = fig.gca(projection='3d')
    #
    # x, y, z = np.meshgrid(np.arange(-1, 1, 0.4),
コード例 #5
0
import numpy as np
from scipy.integrate import ode

from calie.fields import generate as gen
from calie.fields import generate_identities as gen_id
from calie.fields import compose as cp


def vf(t, x):
    global field_0
    return list(cp.one_point_interpolation(field_0, point=x, method='cubic'))


if __name__ == '__main__':

    field_0 = gen.generate_random(omega=(20, 20), parameters=(7, 2))

    t0, tEnd, dt = 0, 1, 0.1
    ic = [[i, j] for i in range(8, 15) for j in range(8, 15)]
    colors = ['b'] * len(ic)

    r = ode(vf).set_integrator('vode', method='bdf', max_step=dt)

    fig = plt.figure(num=1)
    ax = fig.add_subplot(111)

    # Plot vector field
    id_field = gen_id.id_eulerian_like(field_0)

    input_field_copy = copy.deepcopy(field_0)
コード例 #6
0
ファイル: bm4_gaussian.py プロジェクト: SebastianoF/calie
        print(
            '--------------------------------------------------------------------------'
        )
        print(
            'Generating dataset GAU! filename: gau-<s>-<algebra/group>.npy j = 1,...,N '
        )
        print(
            '--------------------------------------------------------------------------'
        )

        for s in range(params['num_samples']):  # sample s

            # Generate SVF

            svf1 = gen.generate_random(
                omega, 1, (params['sigma_init'], params['sigma_filter']))
            flow1_ground = methods[params['selected_ground']][0](
                svf1, input_num_steps=params['selected_n_steps'])

            pfi_svf0 = jph(pfo_output_A4_GAU,
                           'gau-{}-algebra.npy'.format(s + 1))
            pfi_flow = jph(pfo_output_A4_GAU, 'gau-{}-group.npy'.format(s + 1))

            np.save(pfi_svf0, svf1)
            np.save(pfi_flow, flow1_ground)

            print('svf saved in {}'.format(pfi_svf0))
            print('flow saved in {}'.format(pfi_flow))

        print('\n------------------------------------------')
        print('Data computed and saved in external files!')
コード例 #7
0
        elif params['deformation_model'] == 'linear':

            taste = 2
            beta = 0.8

            x_c, y_c, z_c = [c / 2 for c in omega]

            dm = beta * linear.randomgen_linear_by_taste(1, taste, (x_c, y_c))
            svf_0 = gen.generate_from_matrix(omega, dm, structure='algebra')
            sdisp_0 = l_exp.gss_aei(svf_0)

        elif params['deformation_model'] == 'gauss':

            sampling_svf = (5, 5)
            svf_0 = gen.generate_random(omega, 1, (20, 4))
            sdisp_0 = l_exp.scaling_and_squaring(svf_0)

        else:
            raise IOError

        # save svf as nifti image:
        im_svf0 = utils_nib.set_new_data(im_slab, svf_0)
        nib.save(im_svf0, pfi_svf0)
        print('shape of vector field: {}'.format(im_svf0.shape))

        # --- get integral curves and save ---

        # TODO visualisation of integral curves in 2d projection for the given integration_side param.
        # int_curves = []
        #
コード例 #8
0
"""
import matplotlib.pyplot as plt
import numpy as np

from calie.operations import lie_exp
from calie.visualisations.fields import fields_at_the_window

from calie.fields import generate as gen
from calie.fields import compose as cp

if __name__ == '__main__':

    # generate two vector fields
    omega = (20, 20)

    svf_v = gen.generate_random(omega, parameters=(2, 2))
    svf_v_inv = np.copy(-1 * svf_v)

    # we wrongly perform the composition of stationary velocity fields. The outcome is not the identity.
    v_o_v_inv_alg = cp.lagrangian_dot_lagrangian(svf_v, svf_v_inv)
    v_inv_o_v_alg = cp.lagrangian_dot_lagrangian(svf_v_inv, svf_v)

    # we correctly perform the composition after exponentiating the SVF in the Lie group.
    # The outcome is the identity, as expected.

    l_exp = lie_exp.LieExp()

    disp_v = l_exp.scaling_and_squaring(svf_v)
    disp_v_inv = l_exp.scaling_and_squaring(svf_v_inv)

    v_o_v_inv_grp = cp.lagrangian_dot_lagrangian(disp_v, disp_v_inv)
コード例 #9
0
def test_generate_random_wrong_timepoints():
    with assert_raises(IndexError):
        gen.generate_random((10, 11), t=2)
コード例 #10
0
def test_generate_random_test_shape_3d():
    vf = gen.generate_random((10, 11, 9))
    assert_array_equal(vf.shape, (10, 11, 9, 1, 3))
コード例 #11
0
def test_generate_random_test_shape_2d():
    vf = gen.generate_random((10, 11))
    assert_array_equal(vf.shape, (10, 11, 1, 1, 2))
コード例 #12
0
def test_generate_random_wrong_omega():
    with assert_raises(IndexError):
        gen.generate_random((10, 11, 12, 12), t=2)