コード例 #1
0
ファイル: optimization.py プロジェクト: KristianJensen/cameo
 def __init__(self,
              model=None,
              heuristic_method=inspyred.ec.GA,
              objective_function=None,
              seed=None,
              termination=inspyred.ec.terminators.evaluation_termination,
              plot=True,
              progress=True,
              *args,
              **kwargs):
     super(HeuristicOptimization, self).__init__(*args, **kwargs)
     logger.debug("Seed: %s" % seed)
     self.plot = plot
     self.progress = progress
     if seed is None:
         seed = int(time.time())
     self.seed = seed
     self.observers = []
     self.random = Random(seed=seed)
     self.model = model
     self.termination = termination
     self._objective_function = objective_function
     self._heuristic_method = None
     self.heuristic_method = heuristic_method
     self.heuristic_method.terminator = termination
     self._generator = None
コード例 #2
0
 def setUp(self):
     self.model = TEST_MODEL
     self.representation = [r.id for r in self.model.reactions]
     random = Random(SEED)
     args = {"representation": self.representation}
     self.solutions = BestSolutionArchive()
     for _ in range(10000):
         self.solutions.add(set_generator(random, args), random.random(), None, True, 100)
     self.decoder = ReactionSetDecoder(self.representation, self.model)
コード例 #3
0
 def test_set_indel(self):
     individual = OrderedSet([1, 3, 5, 9, 10])
     representation = list(range(10))
     args = {
         "representation": representation,
         "indel_rate": 1
     }
     new_individuals = set_indel(Random(SEED), [individual], args)
     self.assertEqual(new_individuals[0], [5, 3, 9, 1])
コード例 #4
0
 def test_set_indel(self):
     individual = [1, 3, 5, 9, 10]
     representation = list(range(10))
     args = {
         "representation": representation,
         "indel_rate": 1
     }
     new_individuals = set_indel(Random(SEED), [individual], args)
     self.assertNotEqual(len(new_individuals[0]), len(individual))
     self.assertEqual(new_individuals[0], [1, 3, 5, 6, 9, 10])
コード例 #5
0
 def test_do_set_n_point_crossover(self):
     representation = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N"]
     int_representation = [representation.index(v) for v in representation]
     mom = OrderedSet([representation.index(v) for v in ["A", "B", "E", "K", "L", "M"]])
     dad = OrderedSet([representation.index(v) for v in ["A", "C", "I", "J", "K", "L"]])
     points = [4]
     children = _do_set_n_point_crossover(int_representation, mom, dad, points, Random(), len(mom))
     bro = OrderedSet([0, 1, 8, 9, 10, 11])
     sis = OrderedSet([0, 2, 4, 10, 11, 12])
     self.assertEqual(children[0], bro)
     self.assertEqual(children[1], sis)
コード例 #6
0
 def test_set_mutation(self):
     individual = OrderedSet([1, 3, 5, 9, 10])
     representation = list(range(10))
     args = {
         "representation": representation,
         "mutation_rate": 1
     }
     new_individuals = set_mutation(Random(SEED), [individual], args)
     self.assertEqual(len(new_individuals[0]), len(individual))
     self.assertNotEqual(new_individuals[0], individual)
     self.assertEqual(new_individuals[0], [0, 2, 4, 6, 7])
コード例 #7
0
 def test_multiple_chromossome_set_generator(self):
     random = Random(SEED)
     args = dict(keys=["test_key_1", "test_key_2"],
                 test_key_1_representation=["a1", "a2", "a3", "a4", "a5"],
                 test_key_2_representation=["b1", "b2", "b3", "b4", "b5", "b6", "b7"],
                 test_key_1_max_size=3,
                 test_key_2_max_size=5,
                 variable_size=False)
     candidate = multiple_chromosome_set_generator(random, args)
     self.assertEqual(len(candidate['test_key_1']), 3)
     self.assertEqual(len(candidate['test_key_2']), 5)
コード例 #8
0
 def test_set_n_point_crossover(self):
     mom = OrderedSet([1, 3, 5, 9, 10])
     dad = OrderedSet([2, 3, 7, 8])
     args = {
         "crossover_rate": 1.0,
         "num_crossover_points": 1,
         "candidate_size": 10
     }
     children = set_n_point_crossover(Random(SEED), [mom, dad], args)
     bro = OrderedSet([1, 3, 5, 8])
     sis = OrderedSet([2, 3, 7, 9, 10])
     self.assertEqual(bro, children[0])
     self.assertEqual(sis, children[1])
コード例 #9
0
    def test_multiple_chromosome_set_mutation(self):
        genome = MultipleChromosomeGenome(["A", "B"])
        genome["A"] = [1, 2, 3, 4]
        genome["B"] = [1, 5, 7, 10]
        representation = list(range(10))
        args = {
            "A_representation": representation,
            "B_representation": representation,
            "A_mutation_rate": 1,
            "B_mutation_rate": 1
        }

        new_individuals = multiple_chromosome_set_mutation(Random(SEED), [genome], args)
        self.assertEqual(new_individuals[0]["A"], OrderedSet([0, 6, 7, 8]))
        self.assertEqual(new_individuals[0]["B"], OrderedSet([0, 6, 8, 9]))
コード例 #10
0
    def test_set_generator(self):
        random = Random(SEED)
        representation = ["a", "b", "c", "d", "e", "f"]
        max_size = 5
        variable_size = False
        expected = [[0, 1, 2, 4, 5],
                    [0, 2, 3, 4, 5],
                    [0, 1, 2, 3, 5],
                    [1, 2, 3, 4, 5],
                    [0, 2, 3, 4, 5]]

        for i in range(len(expected)):
            candidate = set_generator(random, dict(representation=representation,
                                                   max_size=max_size,
                                                   variable_size=variable_size))
            self.assertEqual(candidate, expected[i])
コード例 #11
0
    def test_multiple_chromosome_set_indel(self):
        genome = MultipleChromosomeGenome(["A", "B"])
        genome["A"] = [1, 2, 3, 4]
        genome["B"] = [1, 5, 7, 10]
        representation = list(range(10))
        args = {
            "A_representation": representation,
            "B_representation": representation,
            "A_indel_rate": 1,
            "B_indel_rate": 1
        }

        random = Random(SEED)
        new_individuals = multiple_chromosome_set_indel(random, [genome for _ in range(5)], args)
        self.assertEqual(new_individuals[0]["A"], OrderedSet([1, 2, 3, 4, 7]))
        self.assertEqual(new_individuals[0]["B"], OrderedSet([1, 5, 10]))
        self.assertEqual(new_individuals[1]["A"], OrderedSet([2, 3, 4]))
        self.assertEqual(new_individuals[1]["B"], OrderedSet([1, 5, 7, 8, 10]))
        self.assertEqual(new_individuals[2]["A"], OrderedSet([1, 2, 3, 4, 6]))
        self.assertEqual(new_individuals[2]["B"], OrderedSet([1, 5, 7]))
        self.assertEqual(new_individuals[3]["A"], OrderedSet([1, 2, 3, 4, 8]))
        self.assertEqual(new_individuals[3]["B"], OrderedSet([0, 1, 5, 7, 10]))
        self.assertEqual(new_individuals[4]["A"], OrderedSet([1, 2, 3, 4, 7]))
        self.assertEqual(new_individuals[4]["B"], OrderedSet([1, 5, 7, 8, 10]))
コード例 #12
0
ファイル: optimization.py プロジェクト: weif000/cameo
 def random(self):
     if self._random is None:
         self._random = Random()
     return self._random
コード例 #13
0
 def setUp(self):
     self.population = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
     self.random = Random(SEED)
コード例 #14
0
 def setUp(self):
     self.model = TEST_MODEL
     self.args = {}
     self.args.setdefault('representation', [r.id for r in self.model.reactions])
     self.random = Random()