コード例 #1
0
    def test_plog(self):
        gas1 = ct.Solution('pdep-test.cti')
        species = ct.Species.listFromFile('pdep-test.cti')

        r = ct.PlogReaction()
        r.reactants = {'R1A': 1, 'R1B': 1}
        r.products = {'P1': 1, 'H': 1}
        r.rates = [
            (0.01 * ct.one_atm, ct.Arrhenius(1.2124e13, -0.5779,
                                             10872.7 * 4184)),
            (1.0 * ct.one_atm, ct.Arrhenius(4.9108e28, -4.8507,
                                            24772.8 * 4184)),
            (10.0 * ct.one_atm, ct.Arrhenius(1.2866e44, -9.0246,
                                             39796.5 * 4184)),
            (100.0 * ct.one_atm,
             ct.Arrhenius(5.9632e53, -11.529, 52599.6 * 4184))
        ]

        gas2 = ct.Solution(thermo='IdealGas',
                           kinetics='GasKinetics',
                           species=species,
                           reactions=[r])

        gas2.X = gas1.X = 'R1A:0.3, R1B:0.6, P1:0.1'

        for P in [0.001, 0.01, 0.2, 1.0, 1.1, 9.0, 10.0, 99.0, 103.0]:
            gas1.TP = gas2.TP = 900, P * ct.one_atm
            self.assertNear(gas2.forward_rate_constants[0],
                            gas1.forward_rate_constants[0])
            self.assertNear(gas2.net_rates_of_progress[0],
                            gas1.net_rates_of_progress[0])
コード例 #2
0
    def test_negative_A_falloff(self):
        species = ct.Species.listFromFile('gri30.yaml')
        r = ct.FalloffReaction('NH:1, NO:1', 'N2O:1, H:1')
        r.low_rate = ct.Arrhenius(2.16e13, -0.23, 0)
        r.high_rate = ct.Arrhenius(-8.16e12, -0.5, 0)
        self.assertFalse(r.allow_negative_pre_exponential_factor)

        with self.assertRaisesRegex(ct.CanteraError, 'pre-exponential'):
            gas = ct.Solution(thermo='IdealGas',
                              kinetics='GasKinetics',
                              species=species,
                              reactions=[r])

        r.allow_negative_pre_exponential_factor = True
        # Should still fail because of mixed positive and negative A factors
        with self.assertRaisesRegex(ct.CanteraError, 'pre-exponential'):
            gas = ct.Solution(thermo='IdealGas',
                              kinetics='GasKinetics',
                              species=species,
                              reactions=[r])

        r.low_rate = ct.Arrhenius(-2.16e13, -0.23, 0)
        gas = ct.Solution(thermo='IdealGas',
                          kinetics='GasKinetics',
                          species=species,
                          reactions=[r])
        self.assertLess(gas.forward_rate_constants, 0)
コード例 #3
0
 def setUpClass(cls):
     ReactionTests.setUpClass()
     param = cls._rate["low_P_rate_constant"]
     low = ct.Arrhenius(param["A"], param["b"], param["Ea"])
     param = cls._rate["high_P_rate_constant"]
     high = ct.Arrhenius(param["A"], param["b"], param["Ea"])
     cls._rate_obj = ct.LindemannRate(low=low, high=high, falloff_coeffs=[])
コード例 #4
0
 def setUpClass(cls):
     ReactionTests.setUpClass()
     param = cls._rate["low_P_rate_constant"]
     low = ct.Arrhenius(param["A"], param["b"], param["Ea"])
     param = cls._rate["high_P_rate_constant"]
     high = ct.Arrhenius(param["A"], param["b"], param["Ea"])
     param = cls._rate["Troe"]
     data = [param["A"], param["T3"], param["T1"], param["T2"]]
     cls._rate_obj = ct.TroeRate(low=low, high=high, falloff_coeffs=data)
コード例 #5
0
def modify_surface_kinetics(surface, param_to_set):
    """changes a set of numerical parameters of a an Interface among following:
    site_density, coverages, concentrations,
    pre-exponential factor, temperature_exponent, activation_energy

    """
    if not HAS_CANTERA:
        raise SpectroChemPyException(
            'Cantera is not available : please install it before continuing:  \n'
            'conda install -c cantera cantera')

    # check some parameters

    if type(surface) is not ct.composite.Interface:
        raise ValueError('only implemented of ct.composite.Interface')

    for param in param_to_set:
        # check that  param_to_change exists
        try:
            eval('surface.' + param)
        except ValueError:
            print('class {} has no \'{}\' attribute'.format(
                type(surface), param))
            raise
        # if exists => sets its new value
        # if the attribute is writable:
        if param in ('site_density', 'coverages', 'concentrations'):
            init_coverages = surface.coverages
            exec('surface.' + param + '=' + str(param_to_set[param]))
            if param == 'site_density':
                # coverages must be reset
                surface.coverages = init_coverages

        # else use Cantera methods (or derived from cantera)
        elif param.split('.')[-1] == 'pre_exponential_factor':
            str_rate = 'surface.' + '.'.join(param.split('.')[-3:-1])
            b, E = eval(str_rate + '.temperature_exponent,' + str_rate +
                        '.activation_energy ')
            rxn = int(param.split('.')[0].split('[')[-1].split(']')[0])
            modify_rate(surface, rxn, ct.Arrhenius(param_to_set[param], b, E))

        elif param.split('.')[-1] == 'temperature_exponent':
            str_rate = 'surface.' + '.'.join(param.split('.')[-3:-1])
            A, E = eval(str_rate + 'pre_exponential_factor,' + str_rate +
                        '.activation_energy ')
            rxn = int(param.split('.')[0].split('[')[-1].split(']')[0])
            modify_rate(surface, rxn, ct.Arrhenius(A, param_to_set[param], E))

        elif param.split('.')[-1] == 'activation_energy':
            str_rate = 'surface.' + '.'.join(param.split('.')[-3:-1])
            A, b = eval(str_rate + 'pre_exponential_factor,' + str_rate +
                        '.temperature_exponent')
            rxn = int(param.split('.')[0].split('[')[-1].split(']')[0])
            modify_rate(surface, rxn, ct.Arrhenius(A, b, param_to_set[param]))
    return
コード例 #6
0
    def test_falloff(self):
        r = ct.FalloffReaction('OH:2', 'H2O2:1')
        r.high_rate = ct.Arrhenius(7.4e10, -0.37, 0.0)
        r.low_rate = ct.Arrhenius(2.3e12, -0.9, -1700*1000*4.184)
        r.falloff = ct.TroeFalloff((0.7346, 94, 1756, 5182))
        r.efficiencies = {'AR':0.7, 'H2':2.0, 'H2O':6.0}

        gas2 = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                           species=self.species, reactions=[r])
        gas2.TPX = self.gas.TPX

        self.assertNear(gas2.forward_rate_constants[0],
                        self.gas.forward_rate_constants[20])
        self.assertNear(gas2.net_rates_of_progress[0],
                        self.gas.net_rates_of_progress[20])
コード例 #7
0
ファイル: test_reaction.py プロジェクト: mazeau/cantera
 def setUpClass(cls):
     ReactionTests.setUpClass()
     if cls._legacy:
         args = list(cls._rate.values())
         cls._rate_obj = ct.Arrhenius(*args)
     else:
         cls._rate_obj = ct.ArrheniusRate(**cls._rate)
コード例 #8
0
    def test_interface(self):
        surf_species = ct.Species.listFromFile('ptcombust.xml')
        gas = ct.Solution('ptcombust.xml', 'gas')
        surf1 = ct.Interface('ptcombust.xml', 'Pt_surf', [gas])
        r1 = ct.InterfaceReaction()
        r1.reactants = 'H(S):2'
        r1.products = 'H2:1, PT(S):2'
        r1.rate = ct.Arrhenius(3.7e20, 0, 67.4e6)
        r1.coverage_deps = {'H(S)': (0, 0, -6e6)}

        self.assertNear(r1.coverage_deps['H(S)'][2], -6e6)

        surf2 = ct.Interface(thermo='Surface',
                             species=surf_species,
                             kinetics='interface',
                             reactions=[r1],
                             phases=[gas])

        surf2.site_density = surf1.site_density
        surf1.coverages = surf2.coverages = 'PT(S):0.7, H(S):0.3'
        gas.TP = surf2.TP = surf1.TP

        for T in [300, 500, 1500]:
            gas.TP = surf1.TP = surf2.TP = T, 5 * ct.one_atm
            self.assertNear(surf1.forward_rate_constants[1],
                            surf2.forward_rate_constants[0])
            self.assertNear(surf1.net_rates_of_progress[1],
                            surf2.net_rates_of_progress[0])
コード例 #9
0
ファイル: mech_fcns.py プロジェクト: BangShiuh/Frhodo
    def modify_reactions(
            self,
            coeffs,
            rxnNums=[]):  # Only works for Arrhenius equations currently
        if not rxnNums:  # if rxnNums does not exist, modify all
            rxnNums = range(len(coeffs))
        else:
            if isinstance(
                    rxnNums,
                (float, int)):  # if single reaction given, run that one
                rxnNums = [rxnNums]

        for rxnNum in rxnNums:
            rxn = self.gas.reaction(rxnNum)
            if type(rxn) is ct.ElementaryReaction or type(
                    rxn) is ct.ThreeBodyReaction:
                # Get current values
                A = coeffs[rxnNum]['pre_exponential_factor']
                b = coeffs[rxnNum]['temperature_exponent']
                Ea = coeffs[rxnNum]['activation_energy']

                # Update reaction rate
                rxn.rate = ct.Arrhenius(A, b, Ea)
            # elif type(rxn) is ct.PlogReaction:
            # print(dir(rxn))
            # print(rxn.rates[rxn_num])
            # elif type(rxn) is ct.ChebyshevReaction:
            # print(dir(rxn))
            # print(rxn.rates[rxn_num])
            else:
                continue

            self.gas.modify_reaction(rxnNum, rxn)
コード例 #10
0
ファイル: CH4.py プロジェクト: risinyoung/test_opt_red_mech
def fitness(indv):
    tmp_parameters = indv.solution
    
    tmp_reactions = R.copy()
    for i in range(len(tmp_reactions)):
        if tmp_reactions[i].reaction_type !=4:
            tmp_reactions[i].rate = ct.Arrhenius(A = tmp_parameters[3*i], \
            b = tmp_parameters[3*i+1], E = tmp_parameters[3*i+2])
        else:
            tmp_reactions[i].low_rate = ct.Arrhenius(A = tmp_parameters[3*i], \
            b = tmp_parameters[3*i+1], E = tmp_parameters[3*i+2])
    gas2 = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',species=gas.species(),reactions=tmp_reactions)

    gas2.TPX = temp, pres, 'CH4:1, O2:2'
    r = ct.IdealGasConstPressureReactor(gas2)
    sim = ct.ReactorNet([r])
    states = ct.SolutionArray(gas2, extra=['t'])
    try:
        for t in np.arange(0, end_time, step_time):
            sim.advance(t)
            states.append(r.thermo.state, t=1000*t)
    except:
        return 1e8

    max_delta = 0
    index_temp = 0
    for i in range(len(states.T)-2):
        if(states.T[i+1] - states.T[i] > max_delta):
            max_delta = states.T[i+1] - states.T[i]
            index_temp = i

    ignite_time_optimised = float(states.t[index_temp])
    optimised_T   = float(states.T[-1]        )
    optimised_CH4 = float(states('CH4').X[-1] )
    optimised_O2  = float(states('O2').X[-1]  )
    optimised_CO2 = float(states('CO2').X[-1] )
    optimised_H2O = float(states('H2O').X[-1] )
    optimised_H   = float(states('H').X[-1]   )
    optimised_OH  = float(states('OH').X[-1]  )

    # return ((ignite_time_optimised - ignite_time_precise)/ignite_time_precise)**2\
    # + ((optimised_T - precise_T)/precise_T)**2\
    # + ((optimised_O2 - precise_O2)/precise_O2)**2\
    # + ((optimised_CO2 - precise_CO2)/precise_CO2)**2\
    # + ((optimised_H2O - precise_H2O)/precise_H2O)**2\
    return 1e8*abs(ignite_time_optimised - ignite_time_precise) + abs(optimised_T - precise_T)
コード例 #11
0
 def test_arrhenius(self):
     # test assigning Arrhenius rate
     rate = ct.Arrhenius(self._rate["A"], self._rate["b"], self._rate["Ea"])
     rxn = self.from_rate(None)
     if self._legacy:
         rxn.rate = rate
     else:
         with self.assertWarnsRegex(DeprecationWarning, "'Arrhenius' object is deprecated"):
             rxn.rate = rate
     self.check_rxn(rxn)
コード例 #12
0
ファイル: test_reaction.py プロジェクト: mazeau/cantera
 def test_arrhenius(self):
     # test assigning Arrhenius rate
     rate = ct.Arrhenius(self._rate["A"], self._rate["b"], self._rate["Ea"])
     rxn = self._cls(equation=self._equation, kinetics=self.gas,
                     legacy=self._legacy, **self._kwargs)
     if self._legacy:
         rxn.rate = rate
     else:
         with self.assertWarnsRegex(DeprecationWarning, "'Arrhenius' object is deprecated"):
             rxn.rate = rate
     self.check_rxn(rxn)
コード例 #13
0
    def test_elementary(self):
        r = ct.ElementaryReaction({'O':1, 'H2':1}, {'H':1, 'OH':1})
        r.rate = ct.Arrhenius(3.87e1, 2.7, 6260*1000*4.184)

        gas2 = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                           species=self.species, reactions=[r])
        gas2.TPX = self.gas.TPX

        self.assertNear(gas2.forward_rate_constants[0],
                        self.gas.forward_rate_constants[2])
        self.assertNear(gas2.net_rates_of_progress[0],
                        self.gas.net_rates_of_progress[2])
コード例 #14
0
    def test_modify_sticking(self):
        gas = ct.Solution('ptcombust.xml', 'gas')
        surf = ct.Interface('ptcombust.xml', 'Pt_surf', [gas])
        surf.coverages = 'O(S):0.1, PT(S):0.5, H(S):0.4'
        gas.TP = surf.TP

        R = surf.reaction(2)
        R.rate = ct.Arrhenius(0.25, 0, 0) # original sticking coefficient = 1.0

        k1 = surf.forward_rate_constants[2]
        surf.modify_reaction(2, R)
        k2 = surf.forward_rate_constants[2]
        self.assertNear(k1, 4*k2)
コード例 #15
0
    def test_negative_A(self):
        species = ct.Species.listFromFile('gri30.cti')
        r = ct.ElementaryReaction('NH:1, NO:1', 'N2O:1, H:1')
        r.rate = ct.Arrhenius(-2.16e13, -0.23, 0)

        self.assertFalse(r.allow_negative_pre_exponential_factor)

        with self.assertRaises(Exception):
            gas = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                              species=species, reactions=[r])

        r.allow_negative_pre_exponential_factor = True
        gas = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                          species=species, reactions=[r])
コード例 #16
0
    def test_threebody(self):
        r = ct.ThreeBodyReaction()
        r.reactants = {'O':1, 'H':1}
        r.products = {'OH':1}
        r.rate = ct.Arrhenius(5e11, -1.0, 0.0)
        r.efficiencies = {'AR':0.7, 'H2':2.0, 'H2O':6.0}

        gas2 = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                           species=self.species, reactions=[r])
        gas2.TPX = self.gas.TPX

        self.assertNear(gas2.forward_rate_constants[0],
                        self.gas.forward_rate_constants[1])
        self.assertNear(gas2.net_rates_of_progress[0],
                        self.gas.net_rates_of_progress[1])
コード例 #17
0
    def test_modify_third_body(self):
        gas = ct.Solution('h2o2.xml')
        gas.TPX = self.gas.TPX
        R = self.gas.reaction(5)
        A1 = R.rate.pre_exponential_factor
        b1 = R.rate.temperature_exponent
        T = gas.T
        kf1 = gas.forward_rate_constants[5]

        A2 = 1.7 * A1
        b2 = b1 - 0.1
        R.rate = ct.Arrhenius(A2, b2, 0.0)
        gas.modify_reaction(5, R)
        kf2 = gas.forward_rate_constants[5]
        self.assertNear((A2 * T**b2) / (A1 * T**b1), kf2 / kf1)
コード例 #18
0
    def test_modify_elementary(self):
        gas = ct.Solution('h2o2.xml')
        gas.TPX = self.gas.TPX
        R = self.gas.reaction(2)
        A1 = R.rate.pre_exponential_factor
        b1 = R.rate.temperature_exponent
        Ta1 = R.rate.activation_energy / ct.gas_constant
        T = gas.T
        self.assertNear(A1*T**b1*np.exp(-Ta1/T), gas.forward_rate_constants[2])

        A2 = 1.5 * A1
        b2 = b1 + 0.1
        Ta2 = Ta1 * 1.2
        R.rate = ct.Arrhenius(A2, b2, Ta2 * ct.gas_constant)
        gas.modify_reaction(2, R)
        self.assertNear(A2*T**b2*np.exp(-Ta2/T), gas.forward_rate_constants[2])
コード例 #19
0
ファイル: test_reaction.py プロジェクト: mazeau/cantera
    def test_set_rates(self):
        # test setter for property rates
        other = [
            {"P": 100., "A": 1.2124e+16, "b": -1., "Ea": 45491376.8},
            {"P": 10000., "A": 4.9108e+31, "b": -2., "Ea": 103649395.2},
            {"P": 1000000., "A": 1.2866e+47, "b": -3., "Ea": 166508556.0}]
        rate = ct.PlogRate([(o["P"], ct.Arrhenius(o["A"], o["b"], o["Ea"]))
                            for o in other])
        rates = rate.rates
        self.assertEqual(len(rates), len(other))

        for index, item in enumerate(rates):
            P, rate = item
            self.assertNear(P, other[index]["P"])
            self.assertNear(rate.pre_exponential_factor, other[index]["A"])
            self.assertNear(rate.temperature_exponent, other[index]["b"])
            self.assertNear(rate.activation_energy, other[index]["Ea"])
コード例 #20
0
ファイル: mech_fcns.py プロジェクト: AdityaSavara/Frhodo
    def modify_reactions(
            self,
            coeffs,
            rxnNums=[]):  # Only works for Arrhenius equations currently
        if not rxnNums:  # if rxnNums does not exist, modify all
            rxnNums = range(len(coeffs))
        else:
            if isinstance(
                    rxnNums,
                (float, int)):  # if single reaction given, run that one
                rxnNums = [rxnNums]

        for rxnNum in rxnNums:
            rxn = self.gas.reaction(rxnNum)
            rxnChanged = False
            if type(rxn) is ct.ElementaryReaction or type(
                    rxn) is ct.ThreeBodyReaction:
                for coefName in [
                        'activation_energy', 'pre_exponential_factor',
                        'temperature_exponent'
                ]:
                    if coeffs[rxnNum][coefName] != eval(
                            f'rxn.rate.{coefName}'):
                        rxnChanged = True

                if rxnChanged:  # Update reaction rate
                    A = coeffs[rxnNum]['pre_exponential_factor']
                    b = coeffs[rxnNum]['temperature_exponent']
                    Ea = coeffs[rxnNum]['activation_energy']
                    rxn.rate = ct.Arrhenius(A, b, Ea)
            # elif type(rxn) is ct.PlogReaction:
            # print(dir(rxn))
            # print(rxn.rates[rxn_num])
            # elif type(rxn) is ct.ChebyshevReaction:
            # print(dir(rxn))
            # print(rxn.rates[rxn_num])
            else:
                continue

            if rxnChanged:
                self.gas.modify_reaction(rxnNum, rxn)

        time.sleep(
            5E-3
        )  # Not sure if this is necessary, but it reduces strange behavior in incident shock reactor
コード例 #21
0
def set_max_sticking_coeff(rxn, A=0.75):
    """
    Fix the maximum sticking coefficient for the given reaction.

    ToDo: currently this ignores n and Ea in an Arrhenius expression
    and replaces with a uniform A value..
    Also, doesn't yet actually update the kinetics object in Cantera memory.
    """
    assert rxn.is_sticking_coefficient
    if rxn.rate.pre_exponential_factor > A:
        old_stick = rxn.rate
        rate = ct.Arrhenius(A)
        rxn.rate = rate
        print(
            f"Changed sticking coeff for {rxn.equation} from {old_stick!r} to {rxn.rate.pre_exponential_factor}"
        )
        raise NotImplementedError(
            "Haven't updated the kinetics object in Cantera")
コード例 #22
0
ファイル: ratemeasure.py プロジェクト: znicolaou/ratemeasure
def residual(eta, k0, observations, measure_ind, tmaxes, temperatures,
             pressures, initials, maxes, yields):
    rstart = timeit.default_timer()

    ret = 0
    reactions = gas.reaction_equations()
    k = k0 * 10**eta
    if (gas.reaction_type(measure_ind) == 1):
        newrate = ct.ElementaryReaction(gas.reactions()[measure_ind].reactants,
                                        gas.reactions()[measure_ind].products)
        newrate.rate = ct.Arrhenius(
            k,
            gas.reactions()[measure_ind].rate.temperature_exponent,
            gas.reactions()[measure_ind].rate.activation_energy)
        gas.modify_reaction(measure_ind, newrate)
    if (gas.reaction_type(measure_ind) == 2):
        newrate = ct.ThreeBodyReaction(
            reactants=gas.reactions()[measure_ind].reactants,
            products=gas.reactions()[measure_ind].products)
        newrate.efficiencies = gas.reactions()[measure_ind].efficiencies
        newrate.rate = ct.Arrhenius(
            k,
            gas.reactions()[measure_ind].rate.temperature_exponent,
            gas.reactions()[measure_ind].rate.activation_energy)
        gas.modify_reaction(measure_ind, newrate)
    if (gas.reaction_type(measure_ind) == 4):
        newrate = ct.FalloffReaction(
            reactants=gas.reactions()[measure_ind].reactants,
            products=gas.reactions()[measure_ind].products)
        newrate.efficiencies = gas.reactions()[measure_ind].efficiencies
        newrate.falloff = gas.reactions()[measure_ind].falloff
        newrate.low_rate = ct.Arrhenius(
            k,
            gas.reactions()[measure_ind].low_rate.temperature_exponent,
            gas.reactions()[measure_ind].low_rate.temperature_exponent,
            gas.reactions()[measure_ind].low_rate.activation_energy)
        newrate.high_rate = gas.reactions()[measure_ind].high_rate
        gas.modify_reaction(measure_ind, newrate)

    sys.stdout.flush()
    for i in range(0, nmeasure):
        states = runsim_nosense(tmaxes[i], temperatures[i], pressures[i],
                                initials[i])

        for n in maxes:
            lst1 = observations[i].X[:, n]
            lst2 = states.X[:, n]
            ind1 = np.array(np.where(np.sign(np.diff(lst1)) == -1))[0, 0]

            if np.any(np.sign(np.diff(lst2)) == -1):
                ind2 = np.array(np.where(np.sign(np.diff(lst2)) == -1))[0, 0]
            else:
                ind2 = len(lst2) - 1
            ret += ((1.0 * ind2 / ind1 - 1)**2 +
                    (lst2[ind2] / lst1[ind1] - 1)**2) / nmeasure

            if (outflag == 1):
                print(temperatures[i], tmaxes[i], pressures[i] / ct.one_atm,
                      (1.0 * ind2 / ind1 - 1), (lst2[ind2] / lst1[ind1] - 1))
                sys.stdout.flush()
        for n in yields:
            lst1 = observations[i].X[:, n]
            lst2 = states.X[:, n]
            ret += ((lst2[-1] / lst1[-1] - 1)**2) / nmeasure

            if (outflag == 1):
                print(temperatures[i], tmaxes[i], pressures[i] / ct.one_atm,
                      (lst2[-1] / lst1[-1] - 1))
                sys.stdout.flush()

    if (outflag == 1):
        rstop = timeit.default_timer()
        print('iter time: %f' % (rstop - rstart))
        print('residual: ', ret)
        print('x: ', eta)
        sys.stdout.flush()

    return np.sqrt(ret)
コード例 #23
0
ファイル: ratemeasure.py プロジェクト: znicolaou/ratemeasure
          *removed,
          sep=' ',
          file=f)

    f.close()

    if (outflag == 1):
        print(result)
        sys.stdout.flush()
        reactions = gas.reaction_equations()
        if (gas.reaction_type(measure_ind) == 1):
            newrate = ct.ElementaryReaction(
                gas.reactions()[measure_ind].reactants,
                gas.reactions()[measure_ind].products)
            newrate.rate = ct.Arrhenius(
                k,
                gas.reactions()[measure_ind].rate.temperature_exponent,
                gas.reactions()[measure_ind].rate.activation_energy)
            gas.modify_reaction(measure_ind, newrate)
        if (gas.reaction_type(measure_ind) == 2):
            newrate = ct.ThreeBodyReaction(
                reactants=gas.reactions()[measure_ind].reactants,
                products=gas.reactions()[measure_ind].products)
            newrate.efficiencies = gas.reactions()[measure_ind].efficiencies
            newrate.rate = ct.Arrhenius(
                k,
                gas.reactions()[measure_ind].rate.temperature_exponent,
                gas.reactions()[measure_ind].rate.activation_energy)
            gas.modify_reaction(measure_ind, newrate)
        if (gas.reaction_type(measure_ind) == 4):
            newrate = ct.FalloffReaction(
                reactants=gas.reactions()[measure_ind].reactants,
コード例 #24
0
         states('CO2').X,
         '--',
         label='Redeuced to {} reactions'.format(gas2.n_reactions))
plt.legend()
plt.xlabel('Time (ms)')
plt.ylabel('CO2 Mole Fraction')

import best_fit

tmp_reactions = R.copy()
tmp_parameters = best_fit.best_fit[-1][1]
print(len(tmp_reactions))
for i in range(len(tmp_reactions)):
    if tmp_reactions[i].reaction_type != 4:
        tmp_reactions[i].rate = ct.Arrhenius(A=tmp_parameters[3 * i],
                                             b=tmp_parameters[3 * i + 1],
                                             E=tmp_parameters[3 * i + 2])
    else:
        tmp_reactions[i].low_rate = ct.Arrhenius(A=tmp_parameters[3 * i],
                                                 b=tmp_parameters[3 * i + 1],
                                                 E=tmp_parameters[3 * i + 2])

gas2 = ct.Solution(thermo='IdealGas',
                   kinetics='GasKinetics',
                   species=gas.species(),
                   reactions=tmp_reactions)

gas2.TPX = temp, pres, 'CH4:1, O2:2'
r = ct.IdealGasConstPressureReactor(gas2)
sim = ct.ReactorNet([r])
states = ct.SolutionArray(gas2, extra=['t'])
コード例 #25
0
    def perturb_parameter_thisisthecomplicatedonethatdoesntwork(
            self, parameter, new_value):
        param_info = self.model_parameter_info[parameter]
        reaction_number = param_info['reaction_number']
        parameter_type = param_info['parameter_type']

        print(parameter)
        print(param_info)

        reaction = self.gas.reaction(reaction_number)
        print(reaction.rate)
        rate = None
        efficiencies = None
        reactants = reaction.reactant_string
        products = reaction.product_string

        rtype = reaction.reaction_type

        pressurestring = 'pressure'
        HasFalloff = False

        if pressurestring in parameter_type:
            HasFalloff = True
        if HasFalloff:
            highrate = reaction.high_rate
            lowrate = reaction.low_rate
            if rtype == 4:
                newreaction = ct.FalloffReaction(reactants=reactants,
                                                 products=products)
            if rtype == 8:
                newreaction = ct.ChemicallyActivatedReaction(
                    reactants=reactants, products=products)
        else:
            rate = reaction.rate
            if rtype == 2:
                newreaction = ct.ThreeBodyReaction(reactants=reactants,
                                                   products=products)
            else:
                newreaction = ct.ElementaryReaction(reactants=reactants,
                                                    products=products)

        if parameter_type == 'A_factor':
            old_A = rate.pre_exponential_factor
            old_b = rate.temperature_exponent
            old_E = rate.activation_energy
            new_A = new_value
            newreaction.rate = ct.Arrhenius(A=new_A, b=old_b, E=old_E)
        if parameter_type == 'Energy':
            old_A = rate.pre_exponential_factor
            old_b = rate.temperature_exponent
            old_E = rate.activation_energy
            new_E = new_value
            newreaction.rate = ct.Arrhenius(A=old_A, b=old_b, E=new_E)
        if parameter_type == 'High_pressure_A':
            rate = highrate
            old_A = rate.pre_exponential_factor
            old_b = rate.temperature_exponent
            old_E = rate.activation_energy
            new_A = new_value
            newreaction.high_rate = ct.Arrhenius(A=new_A, b=old_b, E=old_E)
        if parameter_type == 'High_pressure_E':
            rate = highrate
            old_A = rate.pre_exponential_factor
            old_b = rate.temperature_exponent
            old_E = rate.activation_energy
            new_E = new_value
            newreaction.high_rate = ct.Arrhenius(A=old_A, b=old_b, E=new_E)
        if parameter_type == 'Low_pressure_A':
            rate = lowrate
            old_A = rate.pre_exponential_factor
            old_b = rate.temperature_exponent
            old_E = rate.activation_energy
            new_A = new_value
            newreaction.low_rate = ct.Arrhenius(A=new_A, b=old_b, E=old_E)
        if parameter_type == 'Low_pressure_E':
            rate = lowrate
            old_A = rate.pre_exponential_factor
            old_b = rate.temperature_exponent
            old_E = rate.activation_energy
            new_E = new_value
            newreaction.low_rate = ct.Arrhenius(A=old_A, b=old_b, E=new_E)

        self.gas.modify_reaction(reaction_number, newreaction)

        if parameter_type == 'Efficiency':
            efficiencies = copy.deepcopy(reaction.efficiencies)
            species = param_info['species']
            efficiencies[species] = new_value
            reaction.efficiencies = efficiencies
        return
コード例 #26
0
ファイル: cti_combine.py プロジェクト: markbarbet/simulations
def cti_write(x={},original_cti='',master_rxns='',master_index=[]):
    if not original_cti:
        raise Exception('Please provide a name for the original mechanism file and try again.')
    if not master_rxns and np.any(master_index):
        raise Exception('Please provide a mechanism file for reactions analysed with master equation or leave master_index empty')
    if master_rxns and not np.any(master_index):
        raise Exception('Please provide master_index, a non-empty list of reaction numbers from original file which are analysed with master equation.')
        
    if not master_rxns and not master_index:
        master_index=np.ones(ct.Solution(original_cti).n_reactions,dtype=bool)
    elif master_rxns and np.any(master_index):
        temp=np.ones(ct.Solution(original_cti).n_reactions,dtype=bool)
        for j in np.arange(len(master_index)):
            
            temp[master_index[j]-1]=False        
        master_index=temp
    lineList=[]
    with open(original_cti) as f:
        lineList=f.readlines()        
    done=False
    count=0
    while not done or count<len(lineList):
        if 'Reaction data' in lineList[count] or 'Reaction Data' in lineList[count] or 'reaction data' in lineList[count]:
            done=True
            lineList=lineList[0:count-1]
        else:count+=1
    with open('tempcti.cti','w') as p:
        p.writelines(lineList)
        
    NewModel=ct.Solution('tempcti.cti')
    original_mechanism=ct.Solution(original_cti)
    master_count=0
    if master_rxns:
        master_reactions=ct.Solution(master_rxns)
    for i in np.arange(original_mechanism.n_reactions):
        if master_index[i]==True:
            NewModel.add_reaction(original_mechanism.reaction(i))
        elif master_index[i]==False:
            NewModel.add_reaction(master_reactions.reaction(master_count))
            master_count+=1   
    
    if x=={}:
        for j in np.arange(original_mechanism.n_reactions):
           
           if master_index[j]:
               if 'ThreeBodyReaction' in str(type(original_mechanism.reaction(j))):
                   NewModel.reaction(j).rate=original_mechanism.reaction(j).rate
               elif 'ElementaryReaction' in str(type(original_mechanism.reaction(j))):
                   NewModel.reaction(j).rate=original_mechanism.reaction(j).rate
               elif 'FalloffReaction' in str(type(original_mechanism.reaction(j))):
                   NewModel.reaction(j).high_rate=original_mechanism.reaction(j).high_rate
                   NewModel.reaction(j).low_rate=original_mechanism.reaction(j).low_rate
                   
                   if original_mechanism.reaction(j).falloff.type=='Troe':
                       NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                   if original_mechanism.reaction(j).falloff.type=='Sri':
                       NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
               elif 'ChemicallyActivatedReaction' in str(type(original_mechanism.reaction(j))):
                   NewModel.reaction(j).high_rate=original_mechanism.reaction(j).high_rate
                   NewModel.reaction(j).low_rate=original_mechanism.reaction(j).low_rate
                   if original_mechanism.reaction(j).falloff.type=='Troe':
                       NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                   if original_mechanism.reaction(j).falloff.type=='Sri':
                       NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
               elif 'PlogReaction' in str(type(original_mechanism.reaction(j))):
                   NewModel.reaction(j).rates=original_mechanism.reaction(j).rates
               elif 'ChebyshevReaction' in str(type(original_mechanism.reaction(j))):
                   NewModel.reaction(j).set_parameters(original_mechanism.reaction(j).Tmin,original_mechanism.reaction(j).Tmax,original_mechanism.reaction(j).Pmin,original_mechanism.reaction(j).Pmax,original_mechanism.reaction(j).coeffs)
    if x!={}:
        for j in np.arange(original_mechanism.n_reactions):
           if master_index[j]:
               try:
                   if 'ThreeBodyReaction' in str(type(original_mechanism.reaction(j))):
                       A=original_mechanism.reaction(j).rate.pre_exponential_factor
                       n=original_mechanism.reaction(j).rate.temperature_exponent
                       Ea=original_mechanism.reaction(j).rate.activation_energy
                       NewModel.reaction(j).rate=ct.Arrhenius(A*np.exp(x['r'+str(j)]['A']),n+x['r'+str(j)]['n'],Ea+x['r'+str(j)]['Ea'])
                   elif 'ElementaryReaction' in str(type(original_mechanism.reaction(j))):
                       A=original_mechanism.reaction(j).rate.pre_exponential_factor
                       n=original_mechanism.reaction(j).rate.temperature_exponent
                       Ea=original_mechanism.reaction(j).rate.activation_energy
                       NewModel.reaction(j).rate=ct.Arrhenius(A*np.exp(x['r'+str(j)]['A']),n+x['r'+str(j)]['n'],Ea+x['r'+str(j)]['Ea'])
                   elif 'FalloffReaction' in str(type(original_mechanism.reaction(j))):
                       A=original_mechanism.reaction(j).high_rate.pre_exponential_factor
                       n=original_mechanism.reaction(j).high_rate.temperature_exponent
                       Ea=original_mechanism.reaction(j).high_rate.activation_energy
                       NewModel.reaction(j).high_rate=ct.Arrhenius(A*np.exp(x['r'+str(j)]['A']),n+x['r'+str(j)]['n'],Ea+x['r'+str(j)]['Ea'])
                       A=original_mechanism.reaction(j).low_rate.pre_exponential_factor
                       n=original_mechanism.reaction(j).low_rate.temperature_exponent
                       Ea=original_mechanism.reaction(j).low_rate.activation_energy
                       NewModel.reaction(j).low_rate=ct.Arrhenius(A*np.exp(x['r'+str(j)]['A']),n+x['r'+str(j)]['n'],Ea+x['r'+str(j)]['Ea'])
                       if original_mechanism.reaction(j).falloff.type=='Troe':
                           NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                       if original_mechanism.reaction(j).falloff.type=='Sri':
                           NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                   elif 'ChemicallyActivatedReaction' in str(type(original_mechanism.reaction(j))):
                       A=original_mechanism.reaction(j).high_rate.pre_exponential_factor
                       n=original_mechanism.reaction(j).high_rate.temperature_exponent
                       Ea=original_mechanism.reaction(j).high_rate.activation_energy
                       NewModel.reaction(j).high_rate=ct.Arrhenius(A*np.exp(x['r'+str(j)]['A']),n+x['r'+str(j)]['n'],Ea+x['r'+str(j)]['Ea'])
                       A=original_mechanism.reaction(j).low_rate.pre_exponential_factor
                       n=original_mechanism.reaction(j).low_rate.temperature_exponent
                       Ea=original_mechanism.reaction(j).low_rate.activation_energy
                       NewModel.reaction(j).low_rate=ct.Arrhenius(A*np.exp(x['r'+str(j)]['A']),n+x['r'+str(j)]['n'],Ea+x['r'+str(j)]['Ea'])
                       if original_mechanism.reaction(j).falloff.type=='Troe':
                           NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                       if original_mechanism.reaction(j).falloff.type=='Sri':
                           NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                   elif 'PlogReaction' in str(type(original_mechanism.reaction(j))):
                       NewModel.reaction(j).rates=original_mechanism.reaction(j).rates
                   elif 'ChebyshevReaction' in str(type(original_mechanism.reaction(j))):
                       NewModel.reaction(j).set_parameters(original_mechanism.reaction(j).Tmin,original_mechanism.reaction(j).Tmax,original_mechanism.reaction(j).Pmin,original_mechanism.reaction(j).Pmax,original_mechanism.reaction(j).coeffs)
               except:
                   if 'ThreeBodyReaction' in str(type(original_mechanism.reaction(j))):
                       NewModel.reaction(j).rate=original_mechanism.reaction(j).rate
                   elif 'ElementaryReaction' in str(type(original_mechanism.reaction(j))):
                       NewModel.reaction(j).rate=original_mechanism.reaction(j).rate
                   elif 'FalloffReaction' in str(type(original_mechanism.reaction(j))):
                       NewModel.reaction(j).high_rate=original_mechanism.reaction(j).high_rate
                       NewModel.reaction(j).low_rate=original_mechanism.reaction(j).low_rate
                       if original_mechanism.reaction(j).falloff.type=='Troe':
                           NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                       if original_mechanism.reaction(j).falloff.type=='Sri':
                           NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                   elif 'ChemicallyActivatedReaction' in str(type(original_mechanism.reaction(j))):
                      NewModel.reaction(j).high_rate=original_mechanism.reaction(j).high_rate
                      NewModel.reaction(j).low_rate=original_mechanism.reaction(j).low_rate
                      if original_mechanism.reaction(j).falloff.type=='Troe':
                          NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                      if original_mechanism.reaction(j).falloff.type=='Sri':
                          NewModel.reaction(j).falloff=original_mechanism.reaction(j).falloff
                   elif 'PlogReaction' in str(type(original_mechanism.reaction(j))):
                      NewModel.reaction(j).rates=original_mechanism.reaction(j).rates
                   elif 'ChebyshevReaction' in str(type(original_mechanism.reaction(j))):
                      NewModel.reaction(j).set_parameters(original_mechanism.reaction(j).Tmin,original_mechanism.reaction(j).Tmax,original_mechanism.reaction(j).Pmin,original_mechanism.reaction(j).Pmax,original_mechanism.reaction(j).coeffs)
                   
               
    
    new_file=ctiw.write(NewModel)
    return new_file
コード例 #27
0
ファイル: flames.py プロジェクト: markbarbet/MSI
    def run_single(self):
        def chebyshev_zeros(da,*args):
            i, m, k, gas, modified_rate, current_array=args
            temp_r=gas.reactions()[i]
            temp_array=copy.deepcopy(current_array)
            temp_array[m,k]=current_array[m,k]+da
            temp_r.set_parameters(temp_r.Tmin,temp_r.Tmax,temp_r.Pmin,temp_r.Pmax,temp_array)
            #temp_r.coeffs[m,k]=gas.reactions()[i].coeffs[m,k]+da
            gas.modify_reaction(i,temp_r)
            adjusted_rate=gas.forward_rate_constants[i]
            
            diff=adjusted_rate-modified_rate
        
            return diff
        gas=self.processor.solution       
        
        self.flame=ct.FreeFlame(gas,width=self.flame_width)
        self.TPX=copy.deepcopy(gas.TPX)
        self.flame.flame.set_steady_tolerances(default=self.tol_ss)   #Set steady state tolerances
        self.flame.flame.set_transient_tolerances(default=self.tol_ts) #Set transient tolerances
        print('Running simulation at T = '+str(round(gas.T,5))+', P = '+str(round(gas.P,5))+'\nConditions: '+str(self.conditions))
        if re.match('[aA]diabatic',self.thermalBoundary):
            energycon = True
        self.flame.energy_enabled = energycon
        
        self.flame.transport_model = 'Multi'
        self.flame.set_max_jac_age(10,10)
        #self.flame.solve(self.loglevel,refine_grid=False)
        self.flame.soret_enabled = self.soret
        
        
        
        
        self.flame.set_refine_criteria(ratio=2.0,slope=0.01,curve=0.025)
        #self.flame.transport_model = 'Multi'
        self.flame.solve(self.loglevel,refine_grid=True)
        self.forward_rates=self.flame.forward_rate_constants
        self.net_rates=self.flame.net_rates_of_progress
        self.reverse_rates=self.flame.reverse_rate_constants
        gas.TPX=self.TPX
        #self.flame.solve(self.loglevel,refine_grid=False)
        # self.flame.solve(self.loglevel,refine_grid=False)
        # self.flame.solve(self.loglevel,refine_grid=False)
        # self.flame.solve(self.loglevel,refine_grid=False)
        # self.flame.solve(self.loglevel,refine_grid=False)
        # self.flame.solve(self.loglevel,refine_grid=False)


        
               
        
        self.dk=0.01
        if re.match('[Ff]lame [Ss]peed',self.flametype):
            columns=['T_in','pressure']+list(self.conditions.keys())+['u0']
            self.solution=pd.DataFrame(columns=columns)
            for i in range(len(columns)):
                if i==0:
                    self.solution['T_in']=[self.temperature]
                elif i==1:
                    self.solution['pressure']=[self.pressure]
                elif i>1 and i<len(columns)-1:
                    self.solution[columns[i]]=[self.conditions[columns[i]]]
                elif i==len(columns)-1:
                    self.solution['u0']=[self.flame.u[0]]
                    
        elif re.match('[Aa]diabatic [Ff]lame',self.flametype):
            self.solution=self.flame.X
            columnNames=gas.species_names
            tempdata=pd.DataFrame(columns=columnNames,data=self.flame.X)
            print(tempdata)
        if re.match('[Aa]diabatic [Ff]lame',self.flametype) and self.kineticSens==1 and bool(self.observables):
            self.dk=0.01
            #Calculate kinetic sensitivities
            sensIndex = [self.flame.grid.tolist(),gas.reaction_equations(),self.observables]
            
            S = np.zeros((len(self.flame.grid),gas.n_reactions,len(self.observables)))
            #print(solution.X[solution.flame.component_index(observables[0])-4,len(f.grid)-1])
            #a=solution.X[solution.flame.component_index(observables[0])-4,len(f.grid)-1]
            for m in range(gas.n_reactions):
                gas.set_multiplier(1.0)
                gas.set_multiplier(1+self.dk,m)
                self.flame.solve(loglevel=1,refine_grid=False)
                for i in np.arange(len(self.observables)):
                    for k in np.arange(len(self.flame.grid)):                    
                        S[k,m,i]=np.log10(self.solution[self.flame.flame.component_index(self.observables[i])-4,k])-np.log10(self.flame.X[self.flame.flame.component_index(self.observables[i])-4,k])
                        #print(solution.X[solution.flame.component_index(observables[i])-4,k])
                        #print(f.X[f.flame.component_index(observables[i])-4,k])
                        S[k,m,i]=np.divide(S[k,m,i],np.log10(self.dk))    
        
        
        elif self.kineticSens==1 and bool(self.observables)==False and not re.match('[Ff]lame [Ss]peed',self.flametype):
            raise Exception('Please supply a list of observables in order to run kinetic sensitivity analysis')
        #gas.set_multiplier(1.0)
        
        
        elif self.kineticSens==1 and re.match('[Ff]lame [Ss]peed',self.flametype):    
            #self.fsens = self.flame.get_flame_speed_reaction_sensitivities()
            sensdict={}
            nominal_u=self.flame.u[0]
            for i in range(len(gas.reactions())):
                equation_type=type(gas.reaction(i)).__name__
                gas.TPX=self.TPX
                if equation_type=='ElementaryReaction' or equation_type=='ThreeBodyReaction':
                    
                    tempA=copy.deepcopy(gas.reaction(i).rate.pre_exponential_factor)
                    tempn=copy.deepcopy(gas.reaction(i).rate.temperature_exponent)
                    tempEa=copy.deepcopy(gas.reaction(i).rate.activation_energy)
                    #gas.reaction(i).rate=ct.Arrhenius(tempA*(1.0+self.dk),tempn,tempEa)
                    #gas.reaction(i).rate=ct.Arrhenius(tempA,tempn,tempEa)
                    temp_r=gas.reactions()[i]
                    temp_r.rate=ct.Arrhenius(tempA*(1.0+self.dk),tempn,tempEa)
                    gas.modify_reaction(i,temp_r)
                    print('Solving flame speed sensitivity with respect to Arrhenius parameters for reaction '+str(i))
                    #print(self.flame.gas.reaction(i).rate)
                    #print(tempA,tempn,tempEa)
                    if self.log_file:
                        with open(self.log_name,'a') as f:
                            f.write('Reaction '+str(i)+' Nominals: '+str(round(tempA,9))+', '+str(round(tempn,9))+', '+str(round(tempEa,9))+'\n')
                            f.write('Reaction '+str(i)+' Modified: '+str(round(gas.reaction(i).rate.pre_exponential_factor,9))+', '+str(round(tempn,9))+', '+str(round(tempEa,9))+'\n')
                    self.flame.solve(self.loglevel,refine_grid=False)
                    temp_u_A=copy.deepcopy(self.flame.u[0])
                    #print(temp_u_A)
                    if self.log_file:
                        with open(self.log_name,'a') as f:
                            f.write('Nominal u0: '+str(round(nominal_u,9))+'\n')
                            f.write('Modified A'+str(i) +' u0: '+str(round(temp_u_A,9))+'\n')
                    #gas.reaction(i).rate=ct.Arrhenius(tempA,tempn*(1.0+self.dk),tempEa)
                    #gas.reaction(i).rate=ct.Arrhenius(tempA,tempn,tempEa)
                    temp_r=gas.reactions()[i]
                    dn=0.00136059
                    temp_r.rate=ct.Arrhenius(tempA,tempn+dn,tempEa)
                    gas.modify_reaction(i,temp_r)
                    
                    
                    self.flame.solve(self.loglevel,refine_grid=False)
                    temp_u_n=copy.deepcopy(self.flame.u[0])
                    #gas.reaction(i).rate=ct.Arrhenius(tempA,tempn,tempEa*(1.0+self.dk))
                    #gas.reaction(i).rate=ct.Arrhenius(tempA,tempn,tempEa)
                    temp_r=gas.reactions()[i]
                    dEa=-14.9255*ct.gas_constant
                    temp_r.rate=ct.Arrhenius(tempA,tempn,tempEa+dEa)
                    gas.modify_reaction(i,temp_r)
                    
                    self.flame.solve(self.loglevel,refine_grid=False)
                    temp_u_Ea=copy.deepcopy(self.flame.u[0])
                    
                    tempChanges=np.array([temp_u_A,temp_u_n,temp_u_Ea])
                    nominals=nominal_u*np.ones(len(tempChanges))
                    nominal_df=pd.DataFrame(columns=['u0'])
                    nominal_df['u0']=nominals
                    tempChanges_df = pd.DataFrame(columns=['u0'])
                    tempChanges_df['u0'] = tempChanges
                    
                    temp_sens=np.zeros(3)
                    temp_sens[0]=self.sensitivityCalculation(float(nominal_df['u0'][0]),float(tempChanges_df['u0'][0]),self.dk)
                    temp_sens[1]=self.sensitivityCalculation(float(nominal_df['u0'][1]),float(tempChanges_df['u0'][1]),dn)
                    temp_sens[2]=self.sensitivityCalculation(float(nominal_df['u0'][2]),float(tempChanges_df['u0'][2]),dEa)
                    sensdict['Reaction '+str(i)]=temp_sens
                    #gas.reaction(i).rate=ct.Arrhenius(tempA,tempn, tempEa)
                    temp_r=gas.reactions()[i]
                    temp_r.rate=ct.Arrhenius(tempA,tempn,tempEa)
                    gas.modify_reaction(i,temp_r)
                    
                    
                elif equation_type=='FalloffReaction':
                    print('Solving flame speed sensitivity with respect to Arrhenius parameters for reaction '+str(i))
                    tempAl=copy.deepcopy(gas.reaction(i).low_rate.pre_exponential_factor)
                    tempnl=copy.deepcopy(gas.reaction(i).low_rate.temperature_exponent)
                    tempEal=copy.deepcopy(gas.reaction(i).low_rate.activation_energy)
                    tempAh=copy.deepcopy(gas.reaction(i).high_rate.pre_exponential_factor)
                    tempnh=copy.deepcopy(gas.reaction(i).high_rate.temperature_exponent)
                    tempEah=copy.deepcopy(gas.reaction(i).high_rate.activation_energy)
                    
                    temp_r=gas.reactions()[i]
                    temp_r.low_rate=ct.Arrhenius(tempAl*(1.0+self.dk),tempnl,tempEal)
                    temp_r.high_rate=ct.Arrhenius(tempAh*(1.0+self.dk),tempnh,tempEah)
                    gas.modify_reaction(i,temp_r)
                    
                    #self.flame.gas.reaction(i).low_rate=ct.Arrhenius(tempAl*(1.0+self.dk),tempnl,tempEal)
                    #self.flame.gas.reaction(i).high_rate=ct.Arrhenius(tempAh*(1.0+self.dk),tempnh,tempEah)
                    self.flame.solve(self.loglevel,refine_grid=False)
                    temp_u_A=copy.deepcopy(self.flame.u[0])
                    
                    temp_r=gas.reactions()[i]
                    dn=0.00136059
                    temp_r.low_rate=ct.Arrhenius(tempAl,tempnl+dn,tempEal)
                    temp_r.high_rate=ct.Arrhenius(tempAh,tempnh+dn,tempEah)
                    gas.modify_reaction(i,temp_r)
                    #self.flame.gas.reaction(i).low_rate=ct.Arrhenius(tempAl,tempnl*(1.0+self.dk),tempEal)
                    #self.flame.gas.reaction(i).high_rate=ct.Arrhenius(tempAh,tempnh*(1.0+self.dk),tempEah)
                    self.flame.solve(self.loglevel,refine_grid=False)
                    temp_u_n=copy.deepcopy(self.flame.u[0])
                    
                    temp_r=gas.reactions()[i]
                    dEa=-14.9255*ct.gas_constant
                    temp_r.low_rate=ct.Arrhenius(tempAl,tempnl,tempEal+dEa)
                    temp_r.high_rate=ct.Arrhenius(tempAh,tempnh,tempEah+dEa)
                    gas.modify_reaction(i,temp_r)
                    #self.flame.gas.reaction(i).low_rate=ct.Arrhenius(tempAl,tempnl,tempEal*(1.0+self.dk))
                    #self.flame.gas.reaction(i).high_rate=ct.Arrhenius(tempAh,tempnh,tempEah*(1.0+self.dk))
                    self.flame.solve(self.loglevel,refine_grid=False)
                    temp_u_Ea=copy.deepcopy(self.flame.u[0])
                    tempChanges=np.array([temp_u_A,temp_u_n,temp_u_Ea])
                    nominals=nominal_u*np.ones(len(tempChanges))
                    nominal_df=pd.DataFrame(columns=['u0'])
                    nominal_df['u0']=nominals
                    tempChanges_df = pd.DataFrame(columns=['u0'])
                    tempChanges_df['u0'] = tempChanges
                    
                    temp_sens=np.zeros(3)
                    temp_sens[0]=self.sensitivityCalculation(float(nominal_df['u0'][0]),float(tempChanges_df['u0'][0]),self.dk)
                    temp_sens[1]=self.sensitivityCalculation(float(nominal_df['u0'][1]),float(tempChanges_df['u0'][1]),dn)
                    temp_sens[2]=self.sensitivityCalculation(float(nominal_df['u0'][2]),float(tempChanges_df['u0'][2]),dEa)
                    
                    sensdict['Reaction '+str(i)]=temp_sens
                    
                    
                    temp_r=gas.reactions()[i]
                    temp_r.low_rate=ct.Arrhenius(tempAl,tempnl,tempEal)
                    temp_r.high_rate=ct.Arrhenius(tempAh,tempnh,tempEah)
                    gas.modify_reaction(i,temp_r)
                    #self.flame.gas.reaction(i).low_rate=ct.Arrhenius(tempAl,tempnl, tempEal)
                    #self.flame.gas.reaction(i).high_rate=ct.Arrhenius(tempAh,tempnh, tempEah)        
                    
                elif equation_type=='ChebyshevReaction':
                    #print('Chebyshev sensitivities not yet installed')
                    
                    current_array=copy.deepcopy(gas.reaction(i).coeffs)
                    temp_u=np.zeros(np.shape(current_array))
                    sens=np.zeros(np.shape(current_array))
                    temp_gas=ct.Solution(self.processor.cti_path)
                    #temp_gas.TPX=gas.TPX
                    #temp_gas.TP=1500,gas.P
                    #temp_range=np.linspace(gas.reactions()[i].Tmin,gas.reactions()[i].Tmax,len(gas.reactions()[i].coeffs[:,0])+1)
                    temp_range=np.linspace(gas.reactions()[i].Tmin,gas.reactions()[i].Tmax,len(gas.reactions()[i].coeffs[:,0]))
                    #midpoints=np.zeros(len(temp_range)-1)
                    midpoints=copy.deepcopy(temp_range)
                    midpoints[0]=(temp_range[0]+temp_range[1])/2
                    midpoints[-1]=(temp_range[-1]+temp_range[-2])/2
                    #for j,T in enumerate(midpoints):
                        #midpoints[j]=(temp_range[j]+temp_range[j+1])/2.0
                        
                    for m in range(len(current_array[:,0])):
                        for k in range(len(current_array[0,:])):
                            gas.TPX=self.TPX
                            temp_gas.TPX=gas.TPX
                            temp_gas.TP=midpoints[m],gas.P
                            current_rate=temp_gas.forward_rate_constants[i]
                            modified_rate=1.01*current_rate
                            print('Solving Chebyshev parameter sensitivity ['+str(m)+', '+str(k)+' for reaction ' +str(i))
                            print(temp_gas.TP)
                            temp_r=temp_gas.reactions()[i]
                            args=(i,m,k,temp_gas,modified_rate,current_array)
                            da=scipy.optimize.fsolve(chebyshev_zeros,current_array[m,k],args=args)
                            gas.TPX=self.TPX
                            print('Delta alpha '+str(m)+', '+str(k)+'= '+str(da))
                            #temp_r.coeffs=current_array
                            temp_r.set_parameters(temp_r.Tmin,temp_r.Tmax,temp_r.Pmin,temp_r.Pmax,current_array)
                            temp_current_array=copy.deepcopy(current_array)
                            temp_current_array[m,k]=current_array[m,k]+da
                            temp_r.set_parameters(temp_r.Tmin,temp_r.Tmax,temp_r.Pmin,temp_r.Pmax,temp_current_array)
                            gas.modify_reaction(i,temp_r)
                            self.flame.solve(self.loglevel,refine_grid=True)
                            temp_u[m,k]=copy.deepcopy(self.flame.u[0])
                            nominals=nominal_u*np.ones(np.shape(current_array))
                            sens[m,k]=self.sensitivityCalculation(nominals[m,k],temp_u[m,k],da)
                            temp_r=gas.reactions()[i]
                            temp_r.set_parameters(temp_r.Tmin,temp_r.Tmax,temp_r.Pmin,temp_r.Pmax,current_array)
                            gas.modify_reaction(i,temp_r)
                    sensdict['Reaction '+str(i)]=sens
                self.fsens=sensdict
        

        
        if self.kineticSens==1 and re.match('[Ff]lame [Ss]peed',self.flametype):
            #numpyMatrixsksens = [dfs[dataframe].values for dataframe in range(len(dfs))]
            #self.kineticSensitivities = np.dstack(numpyMatrixsksens)
            #print(np.shape(self.kineticSensitivities))
            #self.solution=data
            return (self.solution,self.fsens)
        elif self.kineticSens==1 and re.match('[Aa]diabatic [Ff]lame',self.flametype):
            dfs = [pd.DataFrame() for x in range(len(self.observables))]
            #print((pd.DataFrame(sens[0,:])).transpose())
            #test=pd.concat([pd.DataFrame(),pd.DataFrame(sens[0,:]).transpose()])
            #print(test)
            #for k in range(len(self.observables)):
                #dfs[k] = dfs[k].append(((pd.DataFrame(sens[k,:])).transpose()),ignore_index=True)
                #dfs[k]=pd.concat([dfs[k],pd.DataFrame(sens[k,:]).transpose()])
                #dfs[k]=pd.DataFrame(sens[k,:]).transpose()
            #print(dfs)  
            numpyMatrixsksens = [dfs[dataframe].values for dataframe in range(len(dfs))]
            self.kineticSensitivities = np.dstack(numpyMatrixsksens)
            #print(np.shape(self.kineticSensitivities))
            #self.solution=data
            return (self.solution,self.kineticSensitivities)
        elif self.kineticSens==0:
            #numpyMatrixsksens = [dfs[dataframe].values for dataframe in range(len(dfs))]
            
            return (self.solution,[])
        else:
            #self.solution=data
            return (self.solution,[])
コード例 #28
0
class TestElementary(utilities.CanteraTest):

    _cls = ct.ElementaryReaction
    _equation = 'H2 + O <=> H + OH'
    _rate = {'A': 38.7, 'b': 2.7, 'Ea': 2.619184e+07}
    _rate_obj = ct.Arrhenius(38.7, 2.7, 2.619184e+07)
    _index = 2
    _type = "elementary"

    @classmethod
    def setUpClass(cls):
        utilities.CanteraTest.setUpClass()
        cls.gas = ct.Solution('h2o2.xml')
        cls.gas.X = 'H2:0.1, H2O:0.2, O2:0.7, O:1e-4, OH:1e-5, H:2e-5'
        cls.gas.TP = 900, 2*ct.one_atm
        cls.species = ct.Species.listFromFile('h2o2.xml')

    def check_rxn(self, rxn):
        ix = self._index
        self.assertEqual(rxn.reaction_type, self._type)
        self.assertNear(rxn.rate(self.gas.T), self.gas.forward_rate_constants[ix])
        self.assertEqual(rxn.reactants, self.gas.reaction(ix).reactants)
        self.assertEqual(rxn.products, self.gas.reaction(ix).products)

        gas2 = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                           species=self.species, reactions=[rxn])
        gas2.TPX = self.gas.TPX
        self.check_sol(gas2)

    def check_sol(self, gas2):
        ix = self._index
        self.assertEqual(gas2.reaction_type_str(0), self._type)
        self.assertNear(gas2.forward_rate_constants[0],
                        self.gas.forward_rate_constants[ix])
        self.assertNear(gas2.net_rates_of_progress[0],
                        self.gas.net_rates_of_progress[ix])

    def test_rate(self):
        self.assertNear(self._rate_obj(self.gas.T), self.gas.forward_rate_constants[self._index])

    def test_from_parts(self):
        orig = self.gas.reaction(self._index)
        rxn = self._cls(orig.reactants, orig.products)
        rxn.rate = self._rate_obj
        self.check_rxn(rxn)

    def test_from_dict(self):
        rxn = self._cls(equation=self._equation, rate=self._rate, kinetics=self.gas)
        self.check_rxn(rxn)

    def test_from_rate(self):
        rxn = self._cls(equation=self._equation, rate=self._rate_obj, kinetics=self.gas)
        self.check_rxn(rxn)

    def test_add_rxn(self):
        gas2 = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                           species=self.species, reactions=[])
        gas2.TPX = self.gas.TPX

        rxn = self._cls(equation=self._equation, rate=self._rate_obj, kinetics=self.gas)
        gas2.add_reaction(rxn)
        self.check_sol(gas2)

    def test_wrong_rate(self):
        with self.assertRaises(TypeError):
            rxn = self._cls(equation=self._equation, rate=[], kinetics=self.gas)

    def test_no_rate(self):
        rxn = self._cls(equation=self._equation, kinetics=self.gas)
        self.assertNear(rxn.rate(self.gas.T), 0.)

        gas2 = ct.Solution(thermo='IdealGas', kinetics='GasKinetics',
                           species=self.species, reactions=[rxn])
        gas2.TPX = self.gas.TPX

        self.assertNear(gas2.forward_rate_constants[0], 0.)
        self.assertNear(gas2.net_rates_of_progress[0], 0.)

    def test_replace_rate(self):
        rxn = self._cls(equation=self._equation, kinetics=self.gas)
        rxn.rate = self._rate_obj
        self.check_rxn(rxn)
コード例 #29
0
def cti_write2(x={},
               original_cti='',
               master_rxns='',
               master_index=[],
               MP={},
               working_directory='',
               file_name=''):
    #print(MP)
    print(bool(x))
    if not original_cti:
        raise Exception(
            'Please provide a name for the original mechanism file and try again.'
        )
    if not master_rxns and np.any(master_index):
        raise Exception(
            'Please provide a mechanism file for reactions analysed with master equation or leave master_index empty'
        )
    if master_rxns and not np.any(master_index):
        raise Exception(
            'Please provide master_index, a non-empty list of reaction numbers from original file which are analysed with master equation.'
        )

    if not master_rxns and not master_index:
        master_index = np.ones(ct.Solution(original_cti).n_reactions,
                               dtype=bool)
    elif master_rxns and np.any(master_index):
        temp = np.ones(ct.Solution(original_cti).n_reactions, dtype=bool)
        for j in np.arange(len(master_index)):

            temp[master_index[j] - 1] = False
        master_index = temp
    lineList = []
    with open(original_cti) as f:
        lineList = f.readlines()
    done = False
    count = 0
    while not done or count < len(lineList):
        if 'Reaction data' in lineList[count] or 'Reaction Data' in lineList[
                count] or 'reaction data' in lineList[count]:
            done = True
            lineList = lineList[0:count - 1]
        else:
            count += 1
    with open('tempcti.cti', 'w') as p:
        p.writelines(lineList)

    NewModel = ct.Solution('tempcti.cti')
    original_mechanism = ct.Solution(original_cti)
    original_rxn_count = 0
    master_rxn_eqs = []
    if master_rxns:
        with open(master_rxns) as f:
            reactionsList = f.readlines()
        lineList = lineList + reactionsList
        with open('masterTemp.cti', 'w') as f:
            f.writelines(lineList)
        master_reactions = ct.Solution('masterTemp.cti')
        master_rxn_eqs = master_reactions.reaction_equations()
    original_rxn_eqs = []
    for i in np.arange(original_mechanism.n_reactions):
        if master_index[i]:
            NewModel.add_reaction(original_mechanism.reaction(i))
            original_rxn_count += 1
            original_rxn_eqs.append(original_mechanism.reaction_equation(i))
#            if 'FalloffReaction' in str(type(original_mechanism.reaction(i))):
#                print(original_mechanism.reaction(i).high_rate)
#                print(original_mechanism.reaction(i).low_rate)
    if master_rxns:
        for i in np.arange(master_reactions.n_reactions):
            #            print(master_reactions.reaction(i).rate)
            NewModel.add_reaction(master_reactions.reaction(i))

    #print(master_reactions.reaction(0).rate)

    if x == {}:

        for j in np.arange(original_rxn_count - 1):

            #if master_index[j]:
            #print(str(type(original_mechanism.reaction(j))),str(type(NewModel.reaction(j))))
            if 'ThreeBodyReaction' in str(type(NewModel.reaction(j))):
                NewModel.reaction(j).rate = NewModel.reaction(j).rate
            elif 'ElementaryReaction' in str(type(NewModel.reaction(j))):
                NewModel.reaction(j).rate = NewModel.reaction(j).rate
            elif 'FalloffReaction' in str(type(NewModel.reaction(j))):
                NewModel.reaction(j).high_rate = NewModel.reaction(j).high_rate
                NewModel.reaction(j).low_rate = NewModel.reaction(j).low_rate

                if NewModel.reaction(j).falloff.type == 'Troe':
                    NewModel.reaction(j).falloff = NewModel.reaction(j).falloff
                if NewModel.reaction(j).falloff.type == 'Sri':
                    NewModel.reaction(j).falloff = NewModel.reaction(j).falloff
            elif 'ChemicallyActivatedReaction' in str(
                    type(NewModel.reaction(j))):
                NewModel.reaction(j).high_rate = NewModel.reaction(j).high_rate
                NewModel.reaction(j).low_rate = NewModel.reaction(j).low_rate
                if NewModel.reaction(j).falloff.type == 'Troe':
                    NewModel.reaction(j).falloff = NewModel.reaction(j).falloff
                if NewModel.reaction(j).falloff.type == 'Sri':
                    NewModel.reaction(j).falloff = NewModel.reaction(j).falloff
            elif 'PlogReaction' in str(type(NewModel.reaction(j))):
                NewModel.reaction(j).rates = NewModel.reaction(j).rates
            elif 'ChebyshevReaction' in str(type(NewModel.reaction(j))):
                NewModel.reaction(j).set_parameters(
                    NewModel.reaction(j).Tmin,
                    NewModel.reaction(j).Tmax,
                    NewModel.reaction(j).Pmin,
                    NewModel.reaction(j).Pmax,
                    NewModel.reaction(j).coeffs)

    #Rinv = 1/R #cal/mol*K
    E = 1  #going test for energy
    #T = 4184
    #T= 4.186e3
    T = ct.gas_constant
    if x != {}:

        for j in np.arange(original_rxn_count - 1):
            #if master_index[j]:
            try:
                if 'ThreeBodyReaction' in str(type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).rate.pre_exponential_factor
                    n = NewModel.reaction(j).rate.temperature_exponent
                    Ea = NewModel.reaction(j).rate.activation_energy
                    NewModel.reaction(j).rate = ct.Arrhenius(
                        A * np.exp(x['r' + str(j)]['A']),
                        n + x['r' + str(j)]['n'],
                        Ea + x['r' + str(j)]['Ea'] * T)
                elif 'ElementaryReaction' in str(type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).rate.pre_exponential_factor
                    n = NewModel.reaction(j).rate.temperature_exponent
                    Ea = NewModel.reaction(j).rate.activation_energy
                    NewModel.reaction(j).rate = ct.Arrhenius(
                        A * np.exp(x['r' + str(j)]['A']),
                        n + x['r' + str(j)]['n'],
                        Ea + x['r' + str(j)]['Ea'] * T)
                elif 'FalloffReaction' in str(type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).high_rate.pre_exponential_factor
                    n = NewModel.reaction(j).high_rate.temperature_exponent
                    Ea = NewModel.reaction(j).high_rate.activation_energy
                    NewModel.reaction(j).high_rate = ct.Arrhenius(
                        A * np.exp(x['r' + str(j)]['A']),
                        n + x['r' + str(j)]['n'],
                        Ea + x['r' + str(j)]['Ea'] * T)
                    A = NewModel.reaction(j).low_rate.pre_exponential_factor
                    n = NewModel.reaction(j).low_rate.temperature_exponent
                    Ea = NewModel.reaction(j).low_rate.activation_energy
                    NewModel.reaction(j).low_rate = ct.Arrhenius(
                        A * np.exp(x['r' + str(j)]['A']),
                        n + x['r' + str(j)]['n'],
                        Ea + x['r' + str(j)]['Ea'] * T)
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'ChemicallyActivatedReaction' in str(
                        type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).high_rate.pre_exponential_factor
                    n = NewModel.reaction(j).high_rate.temperature_exponent
                    Ea = NewModel.reaction(j).high_rate.activation_energy
                    NewModel.reaction(j).high_rate = ct.Arrhenius(
                        A * np.exp(x['r' + str(j)]['A']),
                        n + x['r' + str(j)]['n'],
                        Ea + x['r' + str(j)]['Ea'] * T)
                    A = NewModel.reaction(j).low_rate.pre_exponential_factor
                    n = NewModel.reaction(j).low_rate.temperature_exponent
                    Ea = NewModel.reaction(j).low_rate.activation_energy
                    NewModel.reaction(j).low_rate = ct.Arrhenius(
                        A * np.exp(x['r' + str(j)]['A']),
                        n + x['r' + str(j)]['n'],
                        Ea + x['r' + str(j)]['Ea'] * T)
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'PlogReaction' in str(type(NewModel.reaction(j))):
                    for number, reactions in enumerate(
                            NewModel.reaction(j).rates):
                        A = NewModel.reaction(
                            j)[number][1].pre_exponential_factor
                        n = NewModel.reaction(
                            j)[number][1].temperature_exponent
                        Ea = NewModel.reaction(j)[number][1].activation_energy
                        NewModel.reaction(j)[number][1] = ct.Arrhenius(
                            A * np.exp(x['r' + str(j)]['A']),
                            n + x['r' + str(j)]['n'],
                            Ea + x['r' + str(j)]['Ea'] * T)
                    NewModel.reaction(j).rates = NewModel.reaction(j).rates
                elif 'ChebyshevReaction' in str(
                        type(original_mechanism.reaction(j))):
                    NewModel.reaction(j).set_parameters(
                        NewModel.reaction(j).Tmin,
                        NewModel.reaction(j).Tmax,
                        NewModel.reaction(j).Pmin,
                        NewModel.reaction(j).Pmax,
                        NewModel.reaction(j).coeffs)

            except:
                #print ('we are in the except statment in marks code',j)
                if 'ThreeBodyReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).rate = NewModel.reaction(j).rate
                elif 'ElementaryReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).rate = NewModel.reaction(j).rate
                elif 'FalloffReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).high_rate = NewModel.reaction(
                        j).high_rate
                    NewModel.reaction(j).low_rate = NewModel.reaction(
                        j).low_rate
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'ChemicallyActivatedReaction' in str(
                        type(NewModel.reaction(j))):
                    NewModel.reaction(j).high_rate = NewModel.reaction(
                        j).high_rate
                    NewModel.reaction(j).low_rate = NewModel.reaction(
                        j).low_rate
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'PlogReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).rates = NewModel.reaction(j).rates
                elif 'ChebyshevReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).set_parameters(
                        NewModel.reaction(j).Tmin,
                        NewModel.reaction(j).Tmax,
                        NewModel.reaction(j).Pmin,
                        NewModel.reaction(j).Pmax,
                        NewModel.reaction(j).coeffs)
    if MP != {}:
        print('insdie the MP if statment')
        for j in np.arange(original_rxn_count, NewModel.n_reactions):

            try:
                if 'ThreeBodyReaction' in str(type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).rate.pre_exponential_factor
                    n = NewModel.reaction(j).rate.temperature_exponent
                    Ea = NewModel.reaction(j).rate.activation_energy
                    NewModel.reaction(j).rate = ct.Arrhenius(
                        A * np.exp(MP['r' + str(j)]['A']),
                        n + MP['r' + str(j)]['n'],
                        Ea + MP['r' + str(j)]['Ea'] * E)
                elif 'ElementaryReaction' in str(type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).rate.pre_exponential_factor
                    n = NewModel.reaction(j).rate.temperature_exponent
                    Ea = NewModel.reaction(j).rate.activation_energy
                    NewModel.reaction(j).rate = ct.Arrhenius(
                        A * np.exp(MP['r' + str(j)]['A']),
                        n + MP['r' + str(j)]['n'],
                        Ea + MP['r' + str(j)]['Ea'] * E)
                elif 'FalloffReaction' in str(type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).high_rate.pre_exponential_factor
                    n = NewModel.reaction(j).high_rate.temperature_exponent
                    Ea = NewModel.reaction(j).high_rate.activation_energy

                    NewModel.reaction(j).high_rate = ct.Arrhenius(
                        A * np.exp(MP['r' + str(j)]['A']),
                        n + MP['r' + str(j)]['n'],
                        Ea + MP['r' + str(j)]['Ea'] * E)
                    A = NewModel.reaction(j).low_rate.pre_exponential_factor
                    n = NewModel.reaction(j).low_rate.temperature_exponent
                    Ea = NewModel.reaction(j).low_rate.activation_energy
                    NewModel.reaction(j).low_rate = ct.Arrhenius(
                        A * np.exp(MP['r' + str(j)]['A']),
                        n + MP['r' + str(j)]['n'],
                        Ea + MP['r' + str(j)]['Ea'] * E)
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'ChemicallyActivatedReaction' in str(
                        type(NewModel.reaction(j))):
                    A = NewModel.reaction(j).high_rate.pre_exponential_factor
                    n = NewModel.reaction(j).high_rate.temperature_exponent
                    Ea = NewModel.reaction(j).high_rate.activation_energy
                    NewModel.reaction(j).high_rate = ct.Arrhenius(
                        A * np.exp(MP['r' + str(j)]['A']),
                        n + MP['r' + str(j)]['n'],
                        Ea + MP['r' + str(j)]['Ea'] * E)
                    A = NewModel.reaction(j).low_rate.pre_exponential_factor
                    n = NewModel.reaction(j).low_rate.temperature_exponent
                    Ea = NewModel.reaction(j).low_rate.activation_energy
                    NewModel.reaction(j).low_rate = ct.Arrhenius(
                        A * np.exp(MP['r' + str(j)]['A']),
                        n + MP['r' + str(j)]['n'],
                        Ea + MP['r' + str(j)]['Ea'] * E)
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'PlogReaction' in str(type(NewModel.reaction(j))):
                    for number, reactions in enumerate(
                            NewModel.reaction(j).rates):
                        A = NewModel.reaction(
                            j)[number][1].pre_exponential_factor
                        n = NewModel.reaction(
                            j)[number][1].temperature_exponent
                        Ea = NewModel.reaction(j)[number][1].activation_energy
                        NewModel.reaction(j)[number][1] = ct.Arrhenius(
                            A * np.exp(MP['r' + str(j)]['A']),
                            n + MP['r' + str(j)]['n'],
                            Ea + MP['r' + str(j)]['Ea'] * E)
                    NewModel.reaction(j).rates = NewModel.reaction(j).rates
                elif 'ChebyshevReaction' in str(
                        type(original_mechanism.reaction(j))):
                    NewModel.reaction(j).set_parameters(
                        NewModel.reaction(j).Tmin,
                        NewModel.reaction(j).Tmax,
                        NewModel.reaction(j).Pmin,
                        NewModel.reaction(j).Pmax,
                        NewModel.reaction(j).coeffs)

            except:
                print('we are in the except statment in marks code', j)
                if 'ThreeBodyReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).rate = NewModel.reaction(j).rate
                elif 'ElementaryReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).rate = NewModel.reaction(j).rate
                elif 'FalloffReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).high_rate = NewModel.reaction(
                        j).high_rate
                    NewModel.reaction(j).low_rate = NewModel.reaction(
                        j).low_rate
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'ChemicallyActivatedReaction' in str(
                        type(NewModel.reaction(j))):
                    NewModel.reaction(j).high_rate = NewModel.reaction(
                        j).high_rate
                    NewModel.reaction(j).low_rate = NewModel.reaction(
                        j).low_rate
                    if NewModel.reaction(j).falloff.type == 'Troe':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                    if NewModel.reaction(j).falloff.type == 'Sri':
                        NewModel.reaction(j).falloff = NewModel.reaction(
                            j).falloff
                elif 'PlogReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).rates = NewModel.reaction(j).rates
                elif 'ChebyshevReaction' in str(type(NewModel.reaction(j))):
                    NewModel.reaction(j).set_parameters(
                        NewModel.reaction(j).Tmin,
                        NewModel.reaction(j).Tmax,
                        NewModel.reaction(j).Pmin,
                        NewModel.reaction(j).Pmax,
                        NewModel.reaction(j).coeffs)

    new_file = ctiw.write(NewModel,
                          cwd=working_directory,
                          file_name=file_name,
                          original_cti=original_cti)
    #tab
    return new_file, original_rxn_eqs, master_rxn_eqs
コード例 #30
0
ファイル: blowers_masel.py プロジェクト: paulblum/cantera
same Blowers-Masel parameters can have different forward rate constants.

The first plot generated shows how the rate constant changes with respect to temperature
for elementary and Blower-Masel reactions. The second plot shows the activation energy
change of a Blowers-Masel reaction with respect to the delta enthalpy of the reaction.

Requires: cantera >= 2.6.0, matplotlib >= 2.0
"""

import cantera as ct
import numpy as np
import matplotlib.pyplot as plt

#Create an elementary reaction O+H2<=>H+OH
r1 = ct.ElementaryReaction({'O': 1, 'H2': 1}, {'H': 1, 'OH': 1})
r1.rate = ct.Arrhenius(3.87e1, 2.7, 6260 * 1000 * 4.184)

#Create a Blowers-Masel reaction O+H2<=>H+OH
r2 = ct.BlowersMaselReaction({'O': 1, 'H2': 1}, {'H': 1, 'OH': 1})
r2.rate = ct.BlowersMasel(3.87e1, 2.7, 6260 * 1000 * 4.184, 1e9)

#Create a Blowers-Masel reaction with same parameters with r2
#reaction equation is H+CH4<=>CH3+H2
r3 = ct.BlowersMaselReaction({'H': 1, 'CH4': 1}, {'CH3': 1, 'H2': 1})
r3.rate = ct.BlowersMasel(3.87e1, 2.7, 6260 * 1000 * 4.184, 1e9)

gas = ct.Solution(thermo='IdealGas',
                  kinetics='GasKinetics',
                  species=ct.Solution('gri30.yaml').species(),
                  reactions=[r1, r2, r3])