def setUp(self): tmpout = tempfile.mkdtemp(prefix='capsul_ex_test_') self.work_dir = tmpout print('working dir:', tmpout) self.input = os.path.join(self.work_dir, 'input_data') stdout = open(os.path.join(self.work_dir, 'stdout'), 'w') subprocess.check_call(['generate_data', self.input], stdout=stdout, stderr=stdout) del stdout self.output = os.path.join(self.work_dir, 'output_data') study_config = StudyConfig(modules=['SomaWorkflowConfig', 'AttributesConfig']) study_config.input_directory = self.input study_config.output_directory = os.path.join( self.work_dir, 'output_data') study_config.shared_directory = os.path.join(self.input, 'share') study_config.somaworkflow_computing_resource = 'localhost' study_config.somaworkflow_computing_resources_config.localhost = { 'transfer_paths': [], } study_config.attributes_schema_paths += [ 'bv_capsul_ex.adhoc_completion', 'bv_capsul_ex.tests.test_ex_pipeline', 'bv_capsul_ex.schema'] study_config.process_completion = 'bv_capsul_ex' study_config.attributes_schemas = {'input': 'bv_capsul_ex', 'output': 'bv_capsul_ex', 'shared': 'bv_capsul_shared'} self.study_config = study_config
def init_study_config(init_config={}): study_config = StudyConfig('test_study', modules=['FomConfig', 'SomaWorkflowConfig'], init_config=init_config) study_config.input_directory = '/tmp/in' study_config.output_directory = '/tmp/out' study_config.attributes_schema_paths.append( 'capsul.attributes.test.test_attributed_process') return study_config
def init_study_config(init_config={}): study_config = StudyConfig( 'test_study', modules=['AttributesConfig', 'SomaWorkflowConfig'], init_config=init_config) study_config.input_directory = '/tmp/in' study_config.output_directory = '/tmp/out' study_config.attributes_schema_paths.append( 'capsul.attributes.test.test_attributed_process') study_config.attributes_schemas['input'] = 'custom_ex' study_config.attributes_schemas['output'] = 'custom_ex' study_config.path_completion = 'custom_ex' return study_config
def init_study_config(init_config={}): study_config = StudyConfig('test_study', modules=['AttributesConfig', 'SomaWorkflowConfig'], init_config=init_config) study_config.input_directory = '/tmp/in' study_config.output_directory = '/tmp/out' study_config.attributes_schema_paths.append( 'capsul.attributes.test.test_attributed_process') study_config.attributes_schemas['input'] = 'custom_ex' study_config.attributes_schemas['output'] = 'custom_ex' study_config.path_completion = 'custom_ex' return study_config
def main(): ''' Run the :mod:`capsul.process.runprocess` module as a commandline ''' usage = '''Usage: python -m capsul [options] processname [arg1] [arg2] ... [argx=valuex] [argy=valuey] ... Example: python -m capsul threshold ~/data/irm.ima /tmp/th.nii threshold1=80 Named arguments (in the shape argx=valuex) may address sub-processes of a pipeline, using the dot separator: PrepareSubject.t1mri=/home/myself/mymri.nii For a more precise description, please look at the web documentation: http://brainvisa.info/capsul/user_doc/user_guide_tree/index.html ''' # Set up logging on stderr. This must be called before any logging takes # place, to avoid "No handlers could be found for logger" errors. logging.basicConfig() parser = OptionParser(description='Run a single CAPSUL process', usage=usage) group1 = OptionGroup( parser, 'Config', description='Processing configuration, database options') group1.add_option( '--studyconfig', dest='studyconfig', help='load StudyConfig configuration from the given file (JSON)') group1.add_option('-i', '--input', dest='input_directory', help='input data directory (if not specified in ' 'studyconfig file). If not specified neither on the ' 'commandline nor study configfile, taken as the same as ' 'output.') group1.add_option('-o', '--output', dest='output_directory', help='output data directory (if not specified in ' 'studyconfig file). If not specified neither on the ' 'commandline nor study configfile, taken as the same as ' 'input.') parser.add_option_group(group1) group2 = OptionGroup( parser, 'Processing', description='Processing options, distributed execution') group2.add_option('--swf', '--soma_workflow', dest='soma_workflow', default=False, action='store_true', help='use soma_workflow. Soma-Workflow ' 'configuration has to be setup and valid for non-local ' 'execution, and additional file transfer options ' 'may be used. The default is *not* to use SWF and ' 'process mono-processor, sequential execution.') group2.add_option('-r', '--resource_id', dest='resource_id', default=None, help='soma-workflow resource ID, defaults to localhost') group2.add_option('-p', '--password', dest='password', default=None, help='password to access the remote computing resource. ' 'Do not specify it if using a ssh key') group2.add_option('--rsa-pass', dest='rsa_key_pass', default=None, help='RSA key password, for ssh key access') group2.add_option('--queue', dest='queue', default=None, help='Queue to use on the computing resource. If not ' 'specified, use the default queue.') #group2.add_option('--input-processing', dest='input_file_processing', #default=None, help='Input files processing: local_path, ' #'transfer, translate, or translate_shared. The default is ' #'local_path if the computing resource is the localhost, or ' #'translate_shared otherwise.') #group2.add_option('--output-processing', dest='output_file_processing', #default=None, help='Output files processing: local_path, ' #'transfer, or translate. The default is local_path.') group2.add_option('--keep-succeeded-workflow', dest='keep_succeded_workflow', action='store_true', default=False, help='keep the workflow in the computing resource ' 'database after execution. By default it is removed.') group2.add_option('--delete-failed-workflow', dest='delete_failed_workflow', action='store_true', default=False, help='delete the workflow in the computing resource ' 'database after execution, if it has failed. By default ' 'it is kept.') parser.add_option_group(group2) group3 = OptionGroup(parser, 'Iteration', description='Iteration') group3.add_option('-I', '--iterate', dest='iterate_on', action='append', help='Iterate the given process, iterating over the ' 'given parameter(s). Multiple parameters may be ' 'iterated jointly using several -I options. In the ' 'process parameters, values are replaced by lists, all ' 'iterated lists should have the same size.\n' 'Ex:\n' 'python -m capsul -I par_a -I par_c a_process ' 'par_a="[1, 2]" par_b="something" ' 'par_c="[\\"one\\", \\"two\\"]"') parser.add_option_group(group3) group4 = OptionGroup(parser, 'Attributes completion') group4.add_option('-a', '--attribute', dest='attributes', action='append', default=[], help='set completion (including FOM) attribute. ' 'Syntax: attribute=value, value the same syntax as ' 'process parameters (python syntax for lists, for ' 'instance), with proper quotes if needed for shell ' 'escaping.\n' 'Ex: -a acquisition="default" ' '-a subject=\'["s1", "s2"]\'') parser.add_option_group(group4) group5 = OptionGroup(parser, 'Help', description='Help and documentation options') group5.add_option('--process-help', dest='process_help', action='store_true', default=False, help='display specified process help') parser.add_option_group(group5) parser.disable_interspersed_args() (options, args) = parser.parse_args() if options.studyconfig: study_config = StudyConfig(modules=StudyConfig.default_modules + ['FomConfig', 'BrainVISAConfig']) if yaml: scdict = yaml.load(open(options.studyconfig)) else: scdict = json.load(open(options.studyconfig)) study_config.set_study_configuration(scdict) else: study_config = StudyConfig() study_config.read_configuration() if options.input_directory: study_config.input_directory = options.input_directory if options.output_directory: study_config.output_directory = options.output_directory if study_config.output_directory in (None, Undefined) \ and study_config.input_directory not in (None, Undefined): study_config.output_directory = study_config.input_directory if study_config.input_directory in (None, Undefined) \ and study_config.output_directory not in (None, Undefined): study_config.input_directory = study_config.output_directory study_config.somaworkflow_keep_succeeded_workflows \ = options.keep_succeded_workflow study_config.somaworkflow_keep_failed_workflows \ = not options.delete_failed_workflow kwre = re.compile('([a-zA-Z_](\.?[a-zA-Z0-9_])*)\s*=\s*(.*)$') attributes = {} for att in options.attributes: m = kwre.match(att) if m is None: raise SyntaxError('syntax error in attribute definition: %s' % att) attributes[m.group(1)] = convert_commandline_parameter(m.group(3)) args = tuple((convert_commandline_parameter(i) for i in args)) kwargs = {} todel = [] for arg in args: if isinstance(arg, six.string_types): m = kwre.match(arg) if m is not None: kwargs[m.group(1)] = convert_commandline_parameter(m.group(3)) todel.append(arg) args = [arg for arg in args if arg not in todel] if not args: parser.print_usage() sys.exit(2) # get the main process process_name = args[0] args = args[1:] iterated = options.iterate_on try: process = get_process_with_params(process_name, study_config, iterated, attributes, *args, **kwargs) except ProcessParamError as e: print("error: {0}".format(e), file=sys.stderr) sys.exit(1) if options.process_help: process.help() print() completion_engine \ = ProcessCompletionEngine.get_completion_engine(process) attribs = completion_engine.get_attribute_values() aval = attribs.export_to_dict() print('Completion attributes:') print('----------------------') print() print('(note: may differ depending on study config file contents, ' 'completion rules (FOM)...)') print() skipped = set(['generated_by_parameter', 'generated_by_process']) for name, value in six.iteritems(aval): if name in skipped: continue ttype = attribs.trait(name).trait_type.__class__.__name__ if isinstance(attribs.trait(name).trait_type, List): ttype += '(%s)' \ % attribs.trait(name).inner_traits[ 0].trait_type.__class__.__name__ print('%s:' % name, ttype) if value not in (None, Undefined): print(' ', value) print() del aval, attribs, completion_engine, process sys.exit(0) resource_id = options.resource_id password = options.password rsa_key_pass = options.rsa_key_pass queue = options.queue file_processing = [] study_config.use_soma_workflow = options.soma_workflow if options.soma_workflow: file_processing = [None, None] else: file_processing = [None, None] res = run_process_with_distribution( study_config, process, options.soma_workflow, resource_id=resource_id, password=password, rsa_key_pass=rsa_key_pass, queue=queue, input_file_processing=file_processing[0], output_file_processing=file_processing[1]) sys.exit(0)