コード例 #1
0
 def _conductance_input_sum_test_assert(self,
                                        model,
                                        target_layer,
                                        test_input,
                                        test_baseline=None):
     layer_cond = LayerConductance(model, target_layer)
     attributions = layer_cond.attribute(
         test_input,
         baselines=test_baseline,
         target=0,
         n_steps=500,
         method="gausslegendre",
     )
     neuron_cond = NeuronConductance(model, target_layer)
     for i in range(attributions.shape[1]):
         for j in range(attributions.shape[2]):
             for k in range(attributions.shape[3]):
                 neuron_vals = neuron_cond.attribute(
                     test_input,
                     (i, j, k),
                     baselines=test_baseline,
                     target=0,
                     n_steps=500,
                 )
                 for n in range(attributions.shape[0]):
                     self.assertAlmostEqual(
                         torch.sum(neuron_vals[n]),
                         attributions[n, i, j, k],
                         delta=0.005,
                     )
コード例 #2
0
 def _conductance_input_test_assert(
     self,
     model,
     target_layer,
     test_input,
     test_neuron,
     expected_input_conductance,
     additional_input=None,
 ):
     for internal_batch_size in (None, 1, 20):
         cond = NeuronConductance(model, target_layer)
         attributions = cond.attribute(
             test_input,
             test_neuron,
             target=0,
             n_steps=500,
             method="gausslegendre",
             additional_forward_args=additional_input,
             internal_batch_size=internal_batch_size,
         )
         if isinstance(expected_input_conductance, tuple):
             for i in range(len(expected_input_conductance)):
                 for j in range(len(expected_input_conductance[i])):
                     assertArraysAlmostEqual(
                         attributions[i][j:j + 1].squeeze(0).tolist(),
                         expected_input_conductance[i][j],
                         delta=0.1,
                     )
         else:
             assertArraysAlmostEqual(
                 attributions.squeeze(0).tolist(),
                 expected_input_conductance,
                 delta=0.1,
             )
コード例 #3
0
 def _conductance_input_test_assert(
     self,
     model: Module,
     target_layer: Module,
     test_input: TensorOrTupleOfTensorsGeneric,
     test_neuron: Union[int, Tuple[int, ...], Callable],
     expected_input_conductance: Union[List[float], Tuple[List[List[float]],
                                                          ...]],
     additional_input: Any = None,
     multiply_by_inputs: bool = True,
 ) -> None:
     for internal_batch_size in (None, 5, 20):
         cond = NeuronConductance(
             model,
             target_layer,
             multiply_by_inputs=multiply_by_inputs,
         )
         self.assertEqual(cond.multiplies_by_inputs, multiply_by_inputs)
         attributions = cond.attribute(
             test_input,
             test_neuron,
             target=0,
             n_steps=500,
             method="gausslegendre",
             additional_forward_args=additional_input,
             internal_batch_size=internal_batch_size,
         )
         if isinstance(expected_input_conductance, tuple):
             for i in range(len(expected_input_conductance)):
                 for j in range(len(expected_input_conductance[i])):
                     assertTensorAlmostEqual(
                         self,
                         attributions[i][j:j + 1].squeeze(0),
                         expected_input_conductance[i][j],
                         delta=0.1,
                         mode="max",
                     )
         else:
             if isinstance(attributions, Tensor):
                 assertTensorAlmostEqual(
                     self,
                     attributions.squeeze(0),
                     expected_input_conductance,
                     delta=0.1,
                     mode="max",
                 )
             else:
                 raise AssertionError(
                     "Attributions not returning a Tensor when expected.")
コード例 #4
0
 def _conductance_input_test_assert(
     self,
     model: Module,
     target_layer: Module,
     test_input: TensorOrTupleOfTensors,
     test_neuron: Union[int, Tuple[int, ...]],
     expected_input_conductance: Union[List[float], Tuple[List[List[float]],
                                                          ...]],
     additional_input: Any = None,
 ) -> None:
     for internal_batch_size in (None, 1, 20):
         cond = NeuronConductance(model, target_layer)
         attributions = cond.attribute(
             test_input,
             test_neuron,
             target=0,
             n_steps=500,
             method="gausslegendre",
             additional_forward_args=additional_input,
             internal_batch_size=internal_batch_size,
         )
         if isinstance(expected_input_conductance, tuple):
             for i in range(len(expected_input_conductance)):
                 for j in range(len(expected_input_conductance[i])):
                     assertArraysAlmostEqual(
                         attributions[i][j:j + 1].squeeze(0).tolist(),
                         expected_input_conductance[i][j],
                         delta=0.1,
                     )
         else:
             if isinstance(attributions, Tensor):
                 assertArraysAlmostEqual(
                     attributions.squeeze(0).tolist(),
                     expected_input_conductance,
                     delta=0.1,
                 )
             else:
                 raise AssertionError(
                     "Attributions not returning a Tensor when expected.")
コード例 #5
0
 def _conductance_input_sum_test_assert(
     self,
     model: Module,
     target_layer: Module,
     test_input: TensorOrTupleOfTensors,
     test_baseline: Optional[Union[Tensor, int, float,
                                   Tuple[Union[Tensor, int, float],
                                         ...]]] = None,
 ):
     layer_cond = LayerConductance(model, target_layer)
     attributions = cast(
         Tensor,
         layer_cond.attribute(
             test_input,
             baselines=test_baseline,
             target=0,
             n_steps=500,
             method="gausslegendre",
         ),
     )
     neuron_cond = NeuronConductance(model, target_layer)
     for i in range(attributions.shape[1]):
         for j in range(attributions.shape[2]):
             for k in range(attributions.shape[3]):
                 neuron_vals = neuron_cond.attribute(
                     test_input,
                     (i, j, k),
                     baselines=test_baseline,
                     target=0,
                     n_steps=500,
                 )
                 for n in range(attributions.shape[0]):
                     self.assertAlmostEqual(
                         torch.sum(neuron_vals[n]).item(),
                         attributions[n, i, j, k].item(),
                         delta=0.005,
                     )
コード例 #6
0
    def test_matching_layer_tuple_selector_fn(self) -> None:
        net = BasicModel_MultiLayer(multi_input_module=True)
        inp = torch.tensor([[0.0, 6.0, 0.0]])

        lc = LayerConductance(net, net.multi_relu)
        layer_attr = lc.attribute(inp,
                                  target=0,
                                  n_steps=500,
                                  method="gausslegendre")
        nc = NeuronConductance(net, net.multi_relu)
        for i in range(len(layer_attr)):
            for j in range(layer_attr[i].shape[1]):
                neuron_attr = nc.attribute(
                    inp,
                    lambda x: x[i][:, j],
                    target=0,
                    n_steps=500,
                    method="gausslegendre",
                )
                self.assertAlmostEqual(
                    neuron_attr.sum().item(),
                    layer_attr[i][0][j].item(),
                    delta=0.005,
                )