def sensitivity_max_assert( self, expl_func: Callable, inputs: TensorOrTupleOfTensorsGeneric, expected_sensitivity: Tensor, perturb_func: Callable = _perturb_func, n_perturb_samples: int = 5, max_examples_per_batch: int = None, baselines: BaselineType = None, target: TargetType = None, additional_forward_args: Any = None, ) -> Tensor: if baselines is None: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) else: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, baselines=baselines, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) assertTensorAlmostEqual(self, sens, expected_sensitivity, 0.05) return sens
def sensitivity_max_assert( self, expl_func, inputs, expected_sensitivity, perturb_func=_perturb_func, n_perturb_samples=5, max_examples_per_batch=None, baselines=None, target=None, additional_forward_args=None, ): if baselines is None: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) else: sens = sensitivity_max( expl_func, inputs, perturb_func=perturb_func, baselines=baselines, target=target, additional_forward_args=additional_forward_args, n_perturb_samples=n_perturb_samples, max_examples_per_batch=max_examples_per_batch, ) assertArraysAlmostEqual(sens, expected_sensitivity) return sens
def sensitivity_captum(self, input_img, method, target, device, library, perturb_fn=perturb_fn_sensitivity, n_perturb_samples=1, **kwargs): if library == "CNN Visualization": return sensitivity_max(inputs=input_img, target_class=target, device=device, explanation_func=method, perturb_func=perturb_fn, n_perturb_samples=n_perturb_samples, **kwargs) else: return sensitivity_max(inputs=input_img, target=target, explanation_func=method, perturb_func=perturb_fn, n_perturb_samples=n_perturb_samples, **kwargs)
def measure_model( model_version, dataset, out_folder, weights_dir, device, method=METHODS["gradcam"], sample_images=50, step=1, ): invTrans = get_inverse_normalization_transformation() data_dir = os.path.join("data") if model_version == "resnet18": model = create_resnet18_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "resnet50": model = create_resnet50_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "densenet": model = create_densenet121_model( num_of_classes=NUM_OF_CLASSES[dataset]) else: model = create_efficientnetb0_model( num_of_classes=NUM_OF_CLASSES[dataset]) model.load_state_dict(torch.load(weights_dir)) # print(model) model.eval() model.to(device) test_dataset = CustomDataset( dataset=dataset, transformer=get_default_transformation(), data_type="test", root_dir=data_dir, step=step, ) data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4) try: image_ids = random.sample(range(0, test_dataset.__len__()), sample_images) except ValueError: raise ValueError( f"Image sample number ({sample_images}) exceeded dataset size ({test_dataset.__len__()})." ) classes_map = test_dataset.classes_map print(f"Measuring {model_version} on {dataset} dataset, with {method}") print("-" * 10) pbar = tqdm(total=test_dataset.__len__(), desc="Model test completion") multipy_by_inputs = False if method == METHODS["ig"]: attr_method = IntegratedGradients(model) nt_samples = 8 n_perturb_samples = 3 if method == METHODS["saliency"]: attr_method = Saliency(model) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["gradcam"]: if model_version == "efficientnet": attr_method = GuidedGradCam(model, model._conv_stem) elif model_version == "densenet": attr_method = GuidedGradCam(model, model.features.conv0) else: attr_method = GuidedGradCam(model, model.conv1) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["deconv"]: attr_method = Deconvolution(model) nt_samples = 8 n_perturb_samples = 10 if method == METHODS["gradshap"]: attr_method = GradientShap(model) nt_samples = 8 if model_version == "efficientnet": n_perturb_samples = 3 elif model_version == "densenet": n_perturb_samples = 2 else: n_perturb_samples = 10 if method == METHODS["gbp"]: attr_method = GuidedBackprop(model) nt_samples = 8 n_perturb_samples = 10 if method == "lime": attr_method = Lime(model) nt_samples = 8 n_perturb_samples = 10 feature_mask = torch.tensor(lime_mask).to(device) multipy_by_inputs = True if method == METHODS['ig']: nt = attr_method else: nt = NoiseTunnel(attr_method) scores = [] @infidelity_perturb_func_decorator(multipy_by_inputs=multipy_by_inputs) def perturb_fn(inputs): noise = torch.tensor(np.random.normal(0, 0.003, inputs.shape)).float() noise = noise.to(device) return inputs - noise for input, label in data_loader: pbar.update(1) inv_input = invTrans(input) input = input.to(device) input.requires_grad = True output = model(input) output = F.softmax(output, dim=1) prediction_score, pred_label_idx = torch.topk(output, 1) prediction_score = prediction_score.cpu().detach().numpy()[0][0] pred_label_idx.squeeze_() if method == METHODS['gradshap']: baseline = torch.randn(input.shape) baseline = baseline.to(device) if method == "lime": attributions = attr_method.attribute(input, target=1, n_samples=50) elif method == METHODS['ig']: attributions = nt.attribute( input, target=pred_label_idx, n_steps=25, ) elif method == METHODS['gradshap']: attributions = nt.attribute(input, target=pred_label_idx, baselines=baseline) else: attributions = nt.attribute( input, nt_type="smoothgrad", nt_samples=nt_samples, target=pred_label_idx, ) infid = infidelity(model, perturb_fn, input, attributions, target=pred_label_idx) if method == "lime": sens = sensitivity_max( attr_method.attribute, input, target=pred_label_idx, n_perturb_samples=1, n_samples=200, feature_mask=feature_mask, ) elif method == METHODS['ig']: sens = sensitivity_max( nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, n_steps=25, ) elif method == METHODS['gradshap']: sens = sensitivity_max(nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, baselines=baseline) else: sens = sensitivity_max( nt.attribute, input, target=pred_label_idx, n_perturb_samples=n_perturb_samples, ) inf_value = infid.cpu().detach().numpy()[0] sens_value = sens.cpu().detach().numpy()[0] if pbar.n in image_ids: attr_data = attributions.squeeze().cpu().detach().numpy() fig, ax = viz.visualize_image_attr_multiple( np.transpose(attr_data, (1, 2, 0)), np.transpose(inv_input.squeeze().cpu().detach().numpy(), (1, 2, 0)), ["original_image", "heat_map"], ["all", "positive"], titles=["original_image", "heat_map"], cmap=default_cmap, show_colorbar=True, use_pyplot=False, fig_size=(8, 6), ) ax[0].set_xlabel( f"Infidelity: {'{0:.6f}'.format(inf_value)}\n Sensitivity: {'{0:.6f}'.format(sens_value)}" ) fig.suptitle( f"True: {classes_map[str(label.numpy()[0])][0]}, Pred: {classes_map[str(pred_label_idx.item())][0]}\nScore: {'{0:.4f}'.format(prediction_score)}", fontsize=16, ) fig.savefig( os.path.join( out_folder, f"{str(pbar.n)}-{classes_map[str(label.numpy()[0])][0]}-{classes_map[str(pred_label_idx.item())][0]}.png", )) plt.close(fig) # if pbar.n > 25: # break scores.append([inf_value, sens_value]) pbar.close() np.savetxt( os.path.join(out_folder, f"{model_version}-{dataset}-{method}.csv"), np.array(scores), delimiter=",", header="infidelity,sensitivity", ) print(f"Artifacts stored at {out_folder}")
def measure_filter_model( model_version, dataset, out_folder, weights_dir, device, method=METHODS["gradcam"], sample_images=50, step=1, use_infidelity=False, use_sensitivity=False, render=False, ids=None, ): invTrans = get_inverse_normalization_transformation() data_dir = os.path.join("data") if model_version == "resnet18": model = create_resnet18_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "resnet50": model = create_resnet50_model(num_of_classes=NUM_OF_CLASSES[dataset]) elif model_version == "densenet": model = create_densenet121_model( num_of_classes=NUM_OF_CLASSES[dataset]) else: model = create_efficientnetb0_model( num_of_classes=NUM_OF_CLASSES[dataset]) model.load_state_dict(torch.load(weights_dir)) # print(model) model.eval() model.to(device) test_dataset = CustomDataset( dataset=dataset, transformer=get_default_transformation(), data_type="test", root_dir=data_dir, step=step, add_filters=True, ids=ids, ) data_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1, shuffle=False, num_workers=4) try: image_ids = random.sample(range(0, test_dataset.__len__()), test_dataset.__len__()) except ValueError: raise ValueError( f"Image sample number ({test_dataset.__len__()}) exceeded dataset size ({test_dataset.__len__()})." ) classes_map = test_dataset.classes_map print(f"Measuring {model_version} on {dataset} dataset, with {method}") print("-" * 10) pbar = tqdm(total=test_dataset.__len__(), desc="Model test completion") multipy_by_inputs = False if method == METHODS["ig"]: attr_method = IntegratedGradients(model) nt_samples = 1 n_perturb_samples = 1 if method == METHODS["saliency"]: attr_method = Saliency(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gradcam"]: if model_version == "efficientnet": attr_method = GuidedGradCam(model, model._conv_stem) elif model_version == "densenet": attr_method = GuidedGradCam(model, model.features.conv0) else: attr_method = GuidedGradCam(model, model.conv1) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["deconv"]: attr_method = Deconvolution(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gradshap"]: attr_method = GradientShap(model) nt_samples = 8 n_perturb_samples = 2 if method == METHODS["gbp"]: attr_method = GuidedBackprop(model) nt_samples = 8 n_perturb_samples = 2 if method == "lime": attr_method = Lime(model) nt_samples = 8 n_perturb_samples = 2 feature_mask = torch.tensor(lime_mask).to(device) multipy_by_inputs = True if method == METHODS["ig"]: nt = attr_method else: nt = NoiseTunnel(attr_method) scores = [] @infidelity_perturb_func_decorator(multipy_by_inputs=multipy_by_inputs) def perturb_fn(inputs): noise = torch.tensor(np.random.normal(0, 0.003, inputs.shape)).float() noise = noise.to(device) return inputs - noise OUR_FILTERS = [ "none", "fx_freaky_details 2,10,1,11,0,32,0", "normalize_local 8,10", "fx_boost_chroma 90,0,0", "fx_mighty_details 25,1,25,1,11,0", "sharpen 300", ] idx = 0 filter_count = 0 filter_attrs = {filter_name: [] for filter_name in OUR_FILTERS} predicted_main_class = 0 for input, label in data_loader: pbar.update(1) inv_input = invTrans(input) input = input.to(device) input.requires_grad = True output = model(input) output = F.softmax(output, dim=1) prediction_score, pred_label_idx = torch.topk(output, 1) prediction_score = prediction_score.cpu().detach().numpy()[0][0] pred_label_idx.squeeze_() if OUR_FILTERS[filter_count] == 'none': predicted_main_class = pred_label_idx.item() if method == METHODS["gradshap"]: baseline = torch.randn(input.shape) baseline = baseline.to(device) if method == "lime": attributions = attr_method.attribute(input, target=1, n_samples=50) elif method == METHODS["ig"]: attributions = nt.attribute( input, target=predicted_main_class, n_steps=25, ) elif method == METHODS["gradshap"]: attributions = nt.attribute(input, target=predicted_main_class, baselines=baseline) else: attributions = nt.attribute( input, nt_type="smoothgrad", nt_samples=nt_samples, target=predicted_main_class, ) if use_infidelity: infid = infidelity(model, perturb_fn, input, attributions, target=predicted_main_class) inf_value = infid.cpu().detach().numpy()[0] else: inf_value = 0 if use_sensitivity: if method == "lime": sens = sensitivity_max( attr_method.attribute, input, target=predicted_main_class, n_perturb_samples=1, n_samples=200, feature_mask=feature_mask, ) elif method == METHODS["ig"]: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, n_steps=25, ) elif method == METHODS["gradshap"]: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, baselines=baseline, ) else: sens = sensitivity_max( nt.attribute, input, target=predicted_main_class, n_perturb_samples=n_perturb_samples, ) sens_value = sens.cpu().detach().numpy()[0] else: sens_value = 0 # filter_name = test_dataset.data.iloc[pbar.n]["filter"].split(" ")[0] attr_data = attributions.squeeze().cpu().detach().numpy() if render: fig, ax = viz.visualize_image_attr_multiple( np.transpose(attr_data, (1, 2, 0)), np.transpose(inv_input.squeeze().cpu().detach().numpy(), (1, 2, 0)), ["original_image", "heat_map"], ["all", "positive"], titles=["original_image", "heat_map"], cmap=default_cmap, show_colorbar=True, use_pyplot=False, fig_size=(8, 6), ) if use_sensitivity or use_infidelity: ax[0].set_xlabel( f"Infidelity: {'{0:.6f}'.format(inf_value)}\n Sensitivity: {'{0:.6f}'.format(sens_value)}" ) fig.suptitle( f"True: {classes_map[str(label.numpy()[0])][0]}, Pred: {classes_map[str(pred_label_idx.item())][0]}\nScore: {'{0:.4f}'.format(prediction_score)}", fontsize=16, ) fig.savefig( os.path.join( out_folder, f"{str(idx)}-{str(filter_count)}-{str(label.numpy()[0])}-{str(OUR_FILTERS[filter_count])}-{classes_map[str(label.numpy()[0])][0]}-{classes_map[str(pred_label_idx.item())][0]}.png", )) plt.close(fig) # if pbar.n > 25: # break score_for_true_label = output.cpu().detach().numpy( )[0][predicted_main_class] filter_attrs[OUR_FILTERS[filter_count]] = [ np.moveaxis(attr_data, 0, -1), "{0:.8f}".format(score_for_true_label), ] data_range_for_current_set = MAX_ATT_VALUES[model_version][method][ dataset] filter_count += 1 if filter_count >= len(OUR_FILTERS): ssims = [] for rot in OUR_FILTERS: ssims.append("{0:.8f}".format( ssim( filter_attrs["none"][0], filter_attrs[rot][0], win_size=11, data_range=data_range_for_current_set, multichannel=True, ))) ssims.append(filter_attrs[rot][1]) scores.append(ssims) filter_count = 0 predicted_main_class = 0 idx += 1 pbar.close() indexes = [] for filter_name in OUR_FILTERS: indexes.append(str(filter_name) + "-ssim") indexes.append(str(filter_name) + "-score") np.savetxt( os.path.join( out_folder, f"{model_version}-{dataset}-{method}-ssim-with-range.csv"), np.array(scores), delimiter=";", fmt="%s", header=";".join([str(rot) for rot in indexes]), ) print(f"Artifacts stored at {out_folder}")