def val_db(pkey, p, value): """ Returns the scenario value of the value argument, already casted according to p=glb.params[pkey] """ isdistrib = 'distrib' in p if isdistrib: dist_name = p['distrib'].lower().title() if prs.isscalar(value): #value is scalar, define how to set db value: if dist_name == "Uniform" : return [value, value] elif dist_name == "Normal": return [value, 0] else: raise Exception("{0} distribution not implemented in cast function (scenario.py). Please contact the administrator".format(dist_name)) return value
def val_db(pkey, p, value): """ Returns the scenario value of the value argument, already casted according to p=glb.params[pkey] """ isdistrib = 'distrib' in p if isdistrib: dist_name = p['distrib'].lower().title() if prs.isscalar(value): #value is scalar, define how to set db value: if dist_name == "Uniform": return [value, value] elif dist_name == "Normal": return [value, 0] else: raise Exception( "{0} distribution not implemented in cast function (scenario.py). Please contact the administrator" .format(dist_name)) return value
def val_sc(pkey, p, value): """ Returns the scenario value of the value argument, already casted according to p=glb.params[pkey] """ if pkey == gk.IPE: return glb.def_gmpes[value] if pkey == gk.SOF: return glb.sof[value] isdistrib = 'distrib' in p if isdistrib: dist_name = p['distrib'].lower().title() if not prs.isscalar(value): #note that UncertainFunction is NOT scalar, #but here we should have only numbers or array of numbers (according to params in glb) #try build a distribution with the given value(s) return mcerp.__dict__[dist_name](*value) return value
def val_sc(pkey, p, value): """ Returns the scenario value of the value argument, already casted according to p=glb.params[pkey] """ if pkey == gk.IPE: return glb.def_gmpes[value] if pkey == gk.SOF: return glb.sof[value] isdistrib = 'distrib' in p if isdistrib: dist_name = p['distrib'].lower().title() if not prs.isscalar( value): #note that UncertainFunction is NOT scalar, #but here we should have only numbers or array of numbers (according to params in glb) #try build a distribution with the given value(s) return mcerp.__dict__[dist_name](*value) return value