コード例 #1
0
    def __init__(self, city, pixel_density=0.1643, node_density=50):
        dir_path = os.path.dirname(__file__)
        city_file = os.path.join(dir_path, city + '.txt')

        city_map_file = os.path.join(dir_path, city + '.png')
        city_map_file_lanes = os.path.join(dir_path, city + 'Lanes.png')
        city_map_file_center = os.path.join(dir_path, city + 'Central.png')

        # The built graph. This is the exact same graph that unreal builds. This
        # is a generic structure used for many cases
        self._graph = Graph(city_file, node_density)

        self._pixel_density = pixel_density
        self._grid = Grid(self._graph)
        # The number of game units per pixel. For now this is fixed.

        self._converter = Converter(city_file, pixel_density, node_density)

        # Load the lanes image
        self.map_image_lanes = Image.open(city_map_file_lanes)
        self.map_image_lanes.load()
        self.map_image_lanes = np.asarray(self.map_image_lanes, dtype="int32")
        # Load the image
        self.map_image = Image.open(city_map_file)
        self.map_image.load()
        self.map_image = np.asarray(self.map_image, dtype="int32")

        # Load the lanes image
        self.map_image_center = Image.open(city_map_file_center)
        self.map_image_center.load()
        self.map_image_center = np.asarray(self.map_image_center,
                                           dtype="int32")
コード例 #2
0
ファイル: map.py プロジェクト: cyy1991/carla
    def __init__(self, city, pixel_density, node_density):
        dir_path = os.path.dirname(__file__)
        city_file = os.path.join(dir_path, city + '.txt')

        city_map_file = os.path.join(dir_path, city + '.png')
        city_map_file_lanes = os.path.join(dir_path, city + 'Lanes.png')
        city_map_file_center = os.path.join(dir_path, city + 'Central.png')

        # The built graph. This is the exact same graph that unreal builds. This
        # is a generic structure used for many cases
        self._graph = Graph(city_file, node_density)

        self._pixel_density = pixel_density
        self._grid = Grid(self._graph)
        # The number of game units per pixel. For now this is fixed.

        self._converter = Converter(city_file, pixel_density, node_density)

        # Load the lanes image
        self.map_image_lanes = Image.open(city_map_file_lanes)
        self.map_image_lanes.load()
        self.map_image_lanes = np.asarray(self.map_image_lanes, dtype="int32")
        # Load the image
        self.map_image = Image.open(city_map_file)
        self.map_image.load()
        self.map_image = np.asarray(self.map_image, dtype="int32")

        # Load the lanes image
        self.map_image_center = Image.open(city_map_file_center)
        self.map_image_center.load()
        self.map_image_center = np.asarray(self.map_image_center, dtype="int32")
コード例 #3
0
    def __init__(self, city_name):

        # Open the necessary files
        dir_path = os.path.dirname(__file__)
        self.city_file = os.path.join(dir_path, '../../planner', city_name + '.txt')
        self.city_map_file = os.path.join(dir_path, '../../planner', city_name + '.png')
        self.city_name = city_name

        # Define the specif parameter for the waypointer. Where is the middle of the road,
        # how open are the curves being made, etc.

        self.lane_shift_distance = 13   # The amount of shifting from the center the car should go
        self.extra_spacing_rights = -3
        self.extra_spacing_lefts = 7  # This is wrong, since it is expressed in world units
        self.way_key_points_predicted = 7
        self.number_of_waypoints = 30

        self._converter = Converter(self.city_file, 0.1643, 50.0)
        self._city_track = CityTrack(self.city_name)
        self._map = self._city_track.get_map()

        # Define here some specific configuration to produce waypoints
        self.last_trajectory = []
        self.lane_shift_distance = self.lane_shift_distance  # The amount of shifting from the center the car should go
        self.extra_spacing_rights = self.extra_spacing_rights
        self.extra_spacing_lefts = self.extra_spacing_lefts
        self.way_key_points_predicted = self.way_key_points_predicted
        self.number_of_waypoints = self.number_of_waypoints
        self.previous_map = [0, 0]

        # The internal state variable
        self.last_trajectory = []
        self._route = []
        self.previous_map = [0, 0]
        self._previous_source = None
        # self.grid = self.make_grid()
        # self.walls = self.make_walls()
        self.last_map_points = None
        self.points = None
コード例 #4
0
class CarlaMap(object):
    def __init__(self, city, pixel_density=0.1643, node_density=50):
        dir_path = os.path.dirname(__file__)
        city_file = os.path.join(dir_path, city + '.txt')

        city_map_file = os.path.join(dir_path, city + '.png')
        city_map_file_lanes = os.path.join(dir_path, city + 'Lanes.png')
        city_map_file_center = os.path.join(dir_path, city + 'Central.png')

        # The built graph. This is the exact same graph that unreal builds. This
        # is a generic structure used for many cases
        self._graph = Graph(city_file, node_density)

        self._pixel_density = pixel_density
        self._grid = Grid(self._graph)
        # The number of game units per pixel. For now this is fixed.

        self._converter = Converter(city_file, pixel_density, node_density)

        # Load the lanes image
        self.map_image_lanes = Image.open(city_map_file_lanes)
        self.map_image_lanes.load()
        self.map_image_lanes = np.asarray(self.map_image_lanes, dtype="int32")
        # Load the image
        self.map_image = Image.open(city_map_file)
        self.map_image.load()
        self.map_image = np.asarray(self.map_image, dtype="int32")

        # Load the lanes image
        self.map_image_center = Image.open(city_map_file_center)
        self.map_image_center.load()
        self.map_image_center = np.asarray(self.map_image_center,
                                           dtype="int32")

    def get_graph_resolution(self):
        return self._graph.get_resolution()

    def get_map_resolution(self):
        return self._converter.get_map_resolution()

    def get_map(self, height=None):
        if height is not None:
            img = Image.fromarray(self.map_image.astype(np.uint8))

            aspect_ratio = height / float(self.map_image.shape[0])

            img = img.resize(
                (int(aspect_ratio * self.map_image.shape[1]), height),
                Image.ANTIALIAS)
            img.load()
            return np.asarray(img, dtype="int32")
        return np.fliplr(self.map_image)

    def get_map_lanes(self, size=None):
        if size is not None:
            img = Image.fromarray(self.map_image_lanes.astype(np.uint8))
            img = img.resize((size[1], size[0]), Image.ANTIALIAS)
            img.load()
            return np.fliplr(np.asarray(img, dtype="int32"))
        return np.fliplr(self.map_image_lanes)

    def get_lane_orientation(self, world):
        """Get the lane orientation of a certain world position."""
        pixel = self.convert_to_pixel(world)

        ori = self.map_image_lanes[int(pixel[1]), int(pixel[0]), 2]
        ori = color_to_angle(ori)

        return (-math.cos(ori), -math.sin(ori))

    def convert_to_node(self, input_data):
        """
        Receives a data type (Can Be Pixel or World )
        :param input_data: position in some coordinate
        :return: A node object
        """
        return self._converter.convert_to_node(input_data)

    def convert_to_pixel(self, input_data):
        """
        Receives a data type (Can Be Node or World )
        :param input_data: position in some coordinate
        :return: A node object
        """
        return self._converter.convert_to_pixel(input_data)

    def convert_to_world(self, input_data):
        """
        Receives a data type (Can Be Pixel or Node )
        :param input_data: position in some coordinate
        :return: A node object
        """
        return self._converter.convert_to_world(input_data)

    def get_walls_directed(self, node_source, source_ori, node_target,
                           target_ori):
        """
        This is the most hacky function. Instead of planning on two ways,
        we basically use a one way road and interrupt the other road by adding
        an artificial wall.

        """

        final_walls = self._grid.get_wall_source(node_source, source_ori,
                                                 node_target)

        final_walls = final_walls.union(
            self._grid.get_wall_target(node_target, target_ori, node_source))
        return final_walls

    def get_walls(self):

        return self._grid.get_walls()

    def get_distance_closest_node(self, pos):

        distance = []
        for node_iter in self._graph.intersection_nodes():
            distance.append(sldist(node_iter, pos))

        return sorted(distance)[0]

    def get_intersection_nodes(self):
        return self._graph.intersection_nodes()

    def search_on_grid(self, node):
        return self._grid.search_on_grid(node[0], node[1])
コード例 #5
0
ファイル: map.py プロジェクト: cyy1991/carla
class CarlaMap(object):

    def __init__(self, city, pixel_density, node_density):
        dir_path = os.path.dirname(__file__)
        city_file = os.path.join(dir_path, city + '.txt')

        city_map_file = os.path.join(dir_path, city + '.png')
        city_map_file_lanes = os.path.join(dir_path, city + 'Lanes.png')
        city_map_file_center = os.path.join(dir_path, city + 'Central.png')

        # The built graph. This is the exact same graph that unreal builds. This
        # is a generic structure used for many cases
        self._graph = Graph(city_file, node_density)

        self._pixel_density = pixel_density
        self._grid = Grid(self._graph)
        # The number of game units per pixel. For now this is fixed.

        self._converter = Converter(city_file, pixel_density, node_density)

        # Load the lanes image
        self.map_image_lanes = Image.open(city_map_file_lanes)
        self.map_image_lanes.load()
        self.map_image_lanes = np.asarray(self.map_image_lanes, dtype="int32")
        # Load the image
        self.map_image = Image.open(city_map_file)
        self.map_image.load()
        self.map_image = np.asarray(self.map_image, dtype="int32")

        # Load the lanes image
        self.map_image_center = Image.open(city_map_file_center)
        self.map_image_center.load()
        self.map_image_center = np.asarray(self.map_image_center, dtype="int32")

    def get_graph_resolution(self):

        return self._graph.get_resolution()

    def get_map(self, height=None):
        if height is not None:
            img = Image.fromarray(self.map_image.astype(np.uint8))

            aspect_ratio = height / float(self.map_image.shape[0])

            img = img.resize((int(aspect_ratio * self.map_image.shape[1]), height), Image.ANTIALIAS)
            img.load()
            return np.asarray(img, dtype="int32")
        return np.fliplr(self.map_image)

    def get_map_lanes(self, size=None):
        if size is not None:
            img = Image.fromarray(self.map_image_lanes.astype(np.uint8))
            img = img.resize((size[1], size[0]), Image.ANTIALIAS)
            img.load()
            return np.fliplr(np.asarray(img, dtype="int32"))
        return np.fliplr(self.map_image_lanes)

    def get_lane_orientation(self, world):
        """Get the lane orientation of a certain world position."""
        pixel = self.convert_to_pixel(world)

        ori = self.map_image_lanes[int(pixel[1]), int(pixel[0]), 2]
        ori = color_to_angle(ori)

        return (-math.cos(ori), -math.sin(ori))

    def convert_to_node(self, input_data):
        """
        Receives a data type (Can Be Pixel or World )
        :param input_data: position in some coordinate
        :return: A node object
        """
        return self._converter.convert_to_node(input_data)

    def convert_to_pixel(self, input_data):
        """
        Receives a data type (Can Be Node or World )
        :param input_data: position in some coordinate
        :return: A node object
        """
        return self._converter.convert_to_pixel(input_data)

    def convert_to_world(self, input_data):
        """
        Receives a data type (Can Be Pixel or Node )
        :param input_data: position in some coordinate
        :return: A node object
        """
        return self._converter.convert_to_world(input_data)

    def get_walls_directed(self, node_source, source_ori, node_target, target_ori):
        """
        This is the most hacky function. Instead of planning on two ways,
        we basically use a one way road and interrupt the other road by adding
        an artificial wall.

        """

        final_walls = self._grid.get_wall_source(node_source, source_ori, node_target)

        final_walls = final_walls.union(self._grid.get_wall_target(
            node_target, target_ori, node_source))
        return final_walls

    def get_walls(self):

        return self._grid.get_walls()

    def get_distance_closest_node(self, pos):

        distance = []
        for node_iter in self._graph.intersection_nodes():
            distance.append(sldist(node_iter, pos))

        return sorted(distance)[0]

    def get_intersection_nodes(self):
        return self._graph.intersection_nodes()

    def search_on_grid(self,node):
        return self._grid.search_on_grid(node[0], node[1])
コード例 #6
0
class Waypointer(object):
    """
        Class used to make waypoints, local planning, given a route.
        TODO 0.9 or 0.10: remodel it, now it is very specific for the Town01 and Town02
        WARNING: there are specific situations were the waypointer does not work.

    """

    def __init__(self, city_name):

        # Open the necessary files
        dir_path = os.path.dirname(__file__)
        self.city_file = os.path.join(dir_path, '../../planner', city_name + '.txt')
        self.city_map_file = os.path.join(dir_path, '../../planner', city_name + '.png')
        self.city_name = city_name

        # Define the specif parameter for the waypointer. Where is the middle of the road,
        # how open are the curves being made, etc.

        self.lane_shift_distance = 13   # The amount of shifting from the center the car should go
        self.extra_spacing_rights = -3
        self.extra_spacing_lefts = 7  # This is wrong, since it is expressed in world units
        self.way_key_points_predicted = 7
        self.number_of_waypoints = 30

        self._converter = Converter(self.city_file, 0.1643, 50.0)
        self._city_track = CityTrack(self.city_name)
        self._map = self._city_track.get_map()

        # Define here some specific configuration to produce waypoints
        self.last_trajectory = []
        self.lane_shift_distance = self.lane_shift_distance  # The amount of shifting from the center the car should go
        self.extra_spacing_rights = self.extra_spacing_rights
        self.extra_spacing_lefts = self.extra_spacing_lefts
        self.way_key_points_predicted = self.way_key_points_predicted
        self.number_of_waypoints = self.number_of_waypoints
        self.previous_map = [0, 0]

        # The internal state variable
        self.last_trajectory = []
        self._route = []
        self.previous_map = [0, 0]
        self._previous_source = None
        # self.grid = self.make_grid()
        # self.walls = self.make_walls()
        self.last_map_points = None
        self.points = None

    def reset(self):
        self.last_trajectory = []
        self._route = []
        self.previous_map = [0, 0]
        self._previous_source = None
        self.last_map_points = None
        self.points = None
        # self.grid = self.make_grid()
        # self.walls = self.make_walls()

    def _search_around_square(self, map_point, map_central_2d):
        """
            Function to search the map point in the central line.
        Args:
            map_point: the used map point
            map_central_2d: the 2d map containing the central lines in red

        Returns:
            projected point in the central line

        """

        x = int(map_point[0])
        y = int(map_point[1])

        square_crop = map_central_2d[(y - 30):(y + 30), (x - 30):(x + 30)]
        small_distance = 10000
        closest_point = [15 - square_crop.shape[1] / 2, 15 - square_crop.shape[0] / 2]

        # print square_crop
        for t in np.transpose(np.nonzero(square_crop)):

            distance = sldist(t, [square_crop.shape[1] / 2, square_crop.shape[0] / 2])

            if distance < small_distance:
                small_distance = distance

                closest_point = [t[0] - square_crop.shape[1] / 2, t[1] - square_crop.shape[0] / 2]

        # self.search_image[x,y ] = 128
        # search_image[x+closest_point[0],y +closest_point[1]] = 128

        return np.array([x + closest_point[0], y + closest_point[1]])

    def _shift_points(self, distance_to_center, lane_points, inflection_position):
        """
            Function to take the route points in the middle of the road and shift then to the
            center of the lane
        Args:
            distance_to_center: The distance you want to shift
            lane_points: the lane points used
            inflection_position: A corner case, when there is a turn.

        Returns:

        """

        shifted_lane_vec = []

        for i in range(len(lane_points[:-1])):
            # if cross > 0:
            # right side
            lane_point = lane_points[i]
            unit_vec = self._get_unit(lane_points[i + 1], lane_points[i])

            shifted_lane = [lane_point[0] + unit_vec[0] * distance_to_center[i],
                            lane_point[1] + unit_vec[1] * distance_to_center[i]]
            # One interesting thing is to replicate the point where the turn happens
            if i == inflection_position:
                unit_vec = self._get_unit(lane_points[i], lane_points[i - 1])

                shifted_lane_vec.append([lane_point[0] + unit_vec[0] * distance_to_center[i],
                                         lane_point[1] + unit_vec[1] * distance_to_center[i]])

            shifted_lane_vec.append(shifted_lane)

        last_lane_point = lane_points[-1]
        shifted_lane = [last_lane_point[0] + unit_vec[0] * distance_to_center[-1],
                        last_lane_point[1] + unit_vec[1] * distance_to_center[-1]]

        shifted_lane_vec.append(shifted_lane)
        return shifted_lane_vec

    # Given a list, find the 3 curve points that this list correspond

    def _find_curve_points(self, points):
        """
            Function to find points when there is a curve.
        Args:
            points: the search space

        Returns:
            the points when there is a curve.

        """
        curve_points = None
        first_time = True
        prev_unit_vec = None
        for i in range(len(points) - 1):

            unit_vec = self._get_unit(points[i + 1], points[i])
            unit_vec = [round(unit_vec[0]), round(unit_vec[1])]

            if not first_time:

                if unit_vec != prev_unit_vec:
                    curve_points = [points[i + 1], points[i], points[i - 1]]
                    return curve_points, [i + 1, i, i - 1], np.cross(unit_vec, prev_unit_vec)

            first_time = False
            prev_unit_vec = unit_vec

        return curve_points, None, None

    def _get_unit(self, last_pos, first_pos):
        """
            Get a unity vector from two points point

        """

        vector_dir = ((last_pos - first_pos) / LA.norm(last_pos - first_pos))
        vector_s_dir = [0, 0]
        vector_s_dir[0] = -vector_dir[1]
        vector_s_dir[1] = vector_dir[0]

        return vector_s_dir

    def generate_final_trajectory(self, coarse_trajectory):
        """
            Smooth the waypoints trajectory using a bezier curve.
        Args:
            coarse_trajectory:

        Returns:

        """

        total_course_trajectory_distance = 0
        previous_point = coarse_trajectory[0]
        for i in range(1, len(coarse_trajectory)):
            total_course_trajectory_distance += sldist(coarse_trajectory[i], previous_point)

        points = bezier.bezier_curve(coarse_trajectory,
                                     max(1, int(total_course_trajectory_distance / 10.0)))
        world_points = []
        points = np.transpose(points)
        points_list = []
        for point in points:
            world_points.append(self._converter.convert_to_world(point))
            points_list.append(point.tolist())

        return world_points, points_list

    def get_free_node_direction_target(self, pos, pos_ori, source):
        """
            Get free positions to drive in the direction of the target point

        """

        free_nodes = self._map.get_adjacent_free_nodes(pos)

        added_walls = set()
        heading_start = np.array([pos_ori[0], pos_ori[1]])

        for adj in free_nodes:

            start_to_goal = np.array([adj[0] - pos[0], adj[1] - pos[1]])
            angle = angle_between(heading_start, start_to_goal)

            if angle < 2 and adj != source:
                added_walls.add((adj[0], adj[1]))

        return added_walls

    def graph_to_waypoints(self, next_route):
        """
            Convert the graph to raw waypoints, with the same size as as the route.
            Basically just project the route to the map and shift to the center of the lane.
        Args:
            next_route: the graph points (nodes) that are going to be converted.

        Returns:
            the list of waypoints

        """

        # Take the map with the central lines
        lane_points = []
        for point in next_route:
            map_point = self._converter.convert_to_pixel([int(point[0]), int(point[1])])
            lane_points.append(self._search_around_square(map_point, self._map.map_image_center))

        # THE CURVE POINTS
        _, points_indexes, curve_direction = self._find_curve_points(lane_points)
        # If it is a intersection we divide this in two parts

        lan_shift_distance_vec = [self.lane_shift_distance] * len(lane_points)

        if points_indexes is not None:
            for i in points_indexes:
                if curve_direction > 0:
                    lan_shift_distance_vec[i] += (self.extra_spacing_lefts * 1)
                else:
                    lan_shift_distance_vec[i] += (self.extra_spacing_rights * -1)

            shifted_lane_vec = self._shift_points(lan_shift_distance_vec, lane_points,
                                                  points_indexes[1])
        else:
            shifted_lane_vec = self._shift_points(lan_shift_distance_vec, lane_points, None)

        return shifted_lane_vec

    def add_extra_points(self, node_target, target_ori, node_source):
        """
            Hacky: Add extra points after the target. The route needs to


        """
        direction = node_target
        direction_ori = target_ori
        # print self.grid

        while len(self._route) < 10:  # ADD EXTRA POINTS AFTER

            try:
                free_nodes = list(
                    self.get_free_node_direction_target(direction, direction_ori, node_source))

                direction_ori = self._get_unit(np.array(direction), np.array(free_nodes[0]))
                aux = -direction_ori[1]
                direction_ori[1] = direction_ori[0]
                direction_ori[0] = aux

                direction = free_nodes[0]
            except IndexError:

                # Repeate some route point, there is no problem.
                direction = [round(self._route[-1][0] + direction_ori[0]),
                             round(self._route[-1][1] + direction_ori[1])]

            print (" added extra point  ", direction)
            self._route.append(direction)


    def convert_list_of_nodes_to_pixel(self, route):
        map_points = []
        for point in route:
            map_point = self._converter.convert_to_pixel([int(point[0]), int(point[1])])

            map_points.append(map_point)

        return map_points




    def get_next_waypoints(self, source, source_ori, target, target_ori):

        """
            Get the next waypoints, from a list of generated waypoints.
        Args:
            source: source position
            source_ori: source orientation
            target: the desired end position
            target_ori: the desired target orientation

        Returns:

        """

        # Project the source and target on the node space.
        track_source = self._city_track.project_node(source)
        track_target = self._city_track.project_node(target)



        # Test if it is already at the goal
        if track_source == track_target:
            self.reset()
            return self.last_trajectory, self.last_map_points, self.convert_list_of_nodes_to_pixel(self._route)

        # This is to avoid computing a new route when inside the route
        # The the distance to the closest intersection.
        distance_node = self._city_track.closest_curve_position(track_source)
        #print ('distance ', distance_node)

        # Potential problem, if the car goest too fast, there can be problems for the turns.
        # I will keep this for a while.
        if distance_node > 2 and self._previous_source != track_source:

            # print node_source
            # print node_targetW
            #print(self._previous_source, track_source)
            #print (track_target)
            #print("Will Recompute")
            self._route = self._city_track.compute_route(track_source, source_ori, track_target,
                                                         target_ori)


            # print self._route

            # IF needed we add points after the objective, that is very hacky.

            self.add_extra_points(track_target, target_ori, track_source)

            self.points = self.graph_to_waypoints(
                self._route[1:(1 + self.way_key_points_predicted)])

            self.last_trajectory, self.last_map_points = self.generate_final_trajectory(
                [np.array(self._converter.convert_to_pixel(source))] + self.points)

            # Store the previous position, to avoid recomputation
            self._previous_source = track_source
            print (self.points)
            return self.last_trajectory, self.last_map_points, self.points


        else:
            if sldist(self.previous_map, self._converter.convert_to_pixel(source)) > 1.0:

                #print(" Recomputed du to map distance")

                # That is because no route was ever computed. This is a problem we should solve.
                if not self._route:
                    self._route = self._city_track.compute_route(track_source, source_ori,
                                                                 track_target, target_ori)
                    # print self._route

                    self.add_extra_points(track_target, target_ori, track_source)

                    self.points = self.graph_to_waypoints(
                        self._route[1:(1 + self.way_key_points_predicted)])

                    self.last_trajectory, self.last_map_points = self.generate_final_trajectory(
                        [np.array(self._converter.convert_to_pixel(source))] + self.points)

                # We have to find the current node position
                self.previous_map = self._converter.convert_to_pixel(source)
                # Make a source not replaced

                for point in self.last_map_points:
                    point_vec = self._get_unit(np.array(self._converter.convert_to_pixel(source)),
                                               point)
                    cross_product = np.cross(source_ori[0:2], point_vec)

                    if (cross_product > 0.0 and sldist(point, self._converter.convert_to_pixel(
                            source)) < 50) or sldist(
                        point,
                        self._converter.convert_to_pixel(
                            source)) < 15.0:
                        self.last_trajectory.remove(
                            self._converter.convert_to_world(
                                point))  # = [self.make_world_map(point)] + self.last_trajc
                        self.last_map_points.remove(point)

            # Store the previous position, to avoid recomputation
            #self._previous_source = track_source

            return self.last_trajectory, self.last_map_points, self.points

        # This function uses the map to test if some specific position is too close to intersections

    def route_test(self, node_source, source_ori, node_target, target_ori):
        route = self._city_track.compute_route(node_source, source_ori, node_target, target_ori)
        return not route == None

    def test_position(self, source):
        node_source = self._city_track.project_node(source)

        distance_node = self._city_track.closest_intersection_position(node_source)
        if distance_node > 2:
            return True
        else:
            return False

    def test_pair(self, source, source_ori, target, target_ori):

        node_source = self._city_track.project_node(source)

        node_target = self._city_track.project_node(target)

        return self.route_test(node_source, source_ori, node_target, target_ori)