コード例 #1
0
ファイル: carla_operator.py プロジェクト: sukritkalra/pylot
 def __update_spectactor_pose(self):
     # Set the world simulation view with respect to the vehicle.
     v_pose = self._ego_vehicle.get_transform()
     v_pose.location -= 10 * carla.Location(v_pose.get_forward_vector())
     v_pose.location.z = 5
     self._spectator.set_transform(v_pose)
コード例 #2
0
    def set_destination(self, location):
        start_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        end_waypoint = self._map.get_waypoint(
            carla.Location(location[0], location[1], location[2]))
        solution = []

        # Setting up global router
        dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map())
        grp = GlobalRoutePlanner(dao)
        grp.setup()

        # Obtain route plan
        x1 = start_waypoint.transform.location.x
        y1 = start_waypoint.transform.location.y
        x2 = end_waypoint.transform.location.x
        y2 = end_waypoint.transform.location.y
        route = grp.plan_route((x1, y1), (x2, y2))

        current_waypoint = start_waypoint
        route.append(RoadOption.VOID)
        for action in route:

            #   Generate waypoints to next junction
            wp_choice = current_waypoint.next(self._hop_resolution)
            while len(wp_choice) == 1:
                current_waypoint = wp_choice[0]
                solution.append((current_waypoint, RoadOption.LANEFOLLOW))
                wp_choice = current_waypoint.next(self._hop_resolution)
                #   Stop at destination
                if current_waypoint.transform.location.distance(
                    end_waypoint.transform.location) < self._hop_resolution: break
            if action == RoadOption.VOID: break

            #   Select appropriate path at the junction
            if len(wp_choice) > 1:

                # Current heading vector
                current_transform = current_waypoint.transform
                current_location = current_transform.location
                projected_location = current_location + \
                    carla.Location(
                        x=math.cos(math.radians(current_transform.rotation.yaw)),
                        y=math.sin(math.radians(current_transform.rotation.yaw)))
                v_current = vector(current_location, projected_location)

                direction = 0
                if action == RoadOption.LEFT:
                    direction = 1
                elif action == RoadOption.RIGHT:
                    direction = -1
                elif action == RoadOption.STRAIGHT:
                    direction = 0
                select_criteria = float('inf')

                #   Choose correct path 
                #   Choose the wp_select waypoint whose direction is the most similar to the action direction.
                for wp_select in wp_choice:
                    v_select = vector(
                        current_location, wp_select.transform.location)
                    cross = float('inf')
                    if direction == 0:
                        cross = abs(np.cross(v_current, v_select)[-1])
                    else:
                        cross = direction*np.cross(v_current, v_select)[-1]
                    if cross < select_criteria:
                        select_criteria = cross
                        current_waypoint = wp_select

                #   Generate all waypoints within the junction
                #   along selected path
                solution.append((current_waypoint, action))
                current_waypoint = current_waypoint.next(self._hop_resolution)[0]
                while current_waypoint.is_intersection:
                    solution.append((current_waypoint, action))
                    current_waypoint = current_waypoint.next(self._hop_resolution)[0]

        assert solution

        self._current_plan = solution
        self._local_planner.set_global_plan(self._current_plan)
コード例 #3
0
    vehicle.apply_control(carla.VehicleControl(throttle=0.3, steer=0.0))
    vehicle.set_autopilot(False)  # if you just wanted some NPCs to drive.

    actor_list.append(vehicle)

    # https://carla.readthedocs.io/en/latest/cameras_and_sensors
    # get the blueprint for this sensor
    blueprint = blueprint_library.find('sensor.camera.rgb')
    # change the dimensions of the image
    blueprint.set_attribute('image_size_x', f'{IM_WIDTH}')
    blueprint.set_attribute('image_size_y', f'{IM_HEIGHT}')
    blueprint.set_attribute('fov', '110')
    #blueprint.set_attribute('sensor_tick', '0.2')

    # Adjust sensor relative to vehicle
    spawn_point = carla.Transform(carla.Location(x=2.5, z=0.7))

    # spawn the sensor and attach to vehicle.
    sensor = world.spawn_actor(blueprint, spawn_point, attach_to=vehicle)

    # add sensor to list of actors
    actor_list.append(sensor)

    # Init display
    pygame.init()
    display_surface = pygame.display.set_mode(
        (1280, 960), pygame.HWSURFACE | pygame.DOUBLEBUF)
    pygame.display.set_caption('CARLA image')

    # do something with this sensor
    sensor.listen(lambda data: frame_process(data))
コード例 #4
0
def get_transform(vehicle_location, angle, d=6.4):
    a = math.radians(angle)
    location = carla.Location(d * math.cos(a), d * math.sin(a),
                              2.0) + vehicle_location
    return carla.Transform(location, carla.Rotation(yaw=180 + angle,
                                                    pitch=-15))
コード例 #5
0
 def __init__(self, parent_actor, hud, gamma_correction):
     self.sensor = None
     self.surface = None
     self._parent = parent_actor
     self.hud = hud
     self.recording = False
     bound_y = 0.5 + self._parent.bounding_box.extent.y
     Attachment = carla.AttachmentType
     self._camera_transforms = [
         (
             carla.Transform(
                 carla.Location(x=-16.0, z=2.5), carla.Rotation(pitch=8.0)
             ),
             Attachment.SpringArm,
         ),
         (carla.Transform(carla.Location(x=1.6, z=1.7)), Attachment.Rigid),
         (
             carla.Transform(carla.Location(x=5.5, y=1.5, z=1.5)),
             Attachment.SpringArm,
         ),
         (
             carla.Transform(
                 carla.Location(x=-8.0, z=6.0), carla.Rotation(pitch=6.0)
             ),
             Attachment.SpringArm,
         ),
         (
             carla.Transform(carla.Location(x=-1, y=-bound_y, z=0.5)),
             Attachment.Rigid,
         ),
     ]
     self.transform_index = 1
     self.sensors = [
         ["sensor.camera.rgb", cc.Raw, "Camera RGB"],
         ["sensor.camera.depth", cc.Raw, "Camera Depth (Raw)"],
         ["sensor.camera.depth", cc.Depth, "Camera Depth (Gray Scale)"],
         [
             "sensor.camera.depth",
             cc.LogarithmicDepth,
             "Camera Depth (Logarithmic Gray Scale)",
         ],
         [
             "sensor.camera.semantic_segmentation",
             cc.Raw,
             "Camera Semantic Segmentation (Raw)",
         ],
         [
             "sensor.camera.semantic_segmentation",
             cc.CityScapesPalette,
             "Camera Semantic Segmentation (CityScapes Palette)",
         ],
         ["sensor.lidar.ray_cast", None, "Lidar (Ray-Cast)"],
     ]
     world = self._parent.get_world()
     bp_library = world.get_blueprint_library()
     for item in self.sensors:
         bp = bp_library.find(item[0])
         if item[0].startswith("sensor.camera"):
             bp.set_attribute("image_size_x", str(hud.dim[0]))
             bp.set_attribute("image_size_y", str(hud.dim[1]))
             if bp.has_attribute("gamma"):
                 bp.set_attribute("gamma", str(gamma_correction))
         elif item[0].startswith("sensor.lidar"):
             bp.set_attribute("range", "5000")
         item.append(bp)
     self.index = None
コード例 #6
0
ファイル: cil_test.py プロジェクト: lucascamaradb/kaust_ee354
def main():
    actor_list = []
    try:

        # Connect to Carla server
        client = carla.Client('localhost', 2000)
        client.set_timeout(10.0)
        world = client.load_world('Town01')
        settings = world.get_settings()
        settings.synchronous_mode = True
        # settings.no_rendering_mode = True
        world.apply_settings(settings)

        blueprint_library = world.get_blueprint_library()
        bp = blueprint_library.find('vehicle.tesla.model3')

        colors = bp.get_attribute('color').recommended_values
        bp.set_attribute('color', '140,0,0')

        transform = random.choice(world.get_map().get_spawn_points())
        # print(transform.location)
        # print(transform.rotation)

        vehicle = world.spawn_actor(bp, transform)
        actor_list.append(vehicle)
        print('created %s' % vehicle.type_id)

        camera_bp = blueprint_library.find("sensor.camera.rgb")
        camera_bp.set_attribute('image_size_x', "%s" % str(imageSize[1]))
        camera_bp.set_attribute('image_size_y', "%s" % str(imageSize[0]))
        camera_bp.set_attribute('fov', "%s" % str(100.0))
        camera_transform = carla.Transform(carla.Location(x=2.0, z=1.4),
                                           carla.Rotation(-15.0, 0, 0))
        camera = world.spawn_actor(camera_bp,
                                   camera_transform,
                                   attach_to=vehicle)
        actor_list.append(camera)
        print('created %s' % camera.type_id)

        image_queue = queue.Queue()
        camera.listen(image_queue.put)

        # TURN ON AUTOPILOT FOR TESTING
        # vehicle.set_autopilot(True)
        # print("VEHICLE DIR")
        # print(dir(vehicle))

        # INITIALISE CIL MODEL
        agent = ImitationLearningAgent(vehicle=vehicle,
                                       city_name='Town01',
                                       avoid_stopping=True)

        frame = None

        display = pygame.display.set_mode((imageSize[1], imageSize[0]),
                                          pygame.HWSURFACE | pygame.DOUBLEBUF)
        # font = get_font()
        clock = pygame.time.Clock()

        while True:
            if should_quit():
                return

            clock.tick()
            world.tick()
            ts = world.wait_for_tick()

            if frame is not None:
                if ts.frame_count != frame + 1:
                    logging.warning('frame skip!')
            frame = ts.frame_count

            while True:
                image = image_queue.get()
                if image.frame_number == ts.frame_count:
                    break
            im = np.array(image.raw_data).reshape(imageSize)[:, :, :3]
            speed_vec = vehicle.get_velocity()
            forward_speed = np.sqrt(speed_vec.x**2 + speed_vec.y**2 +
                                    speed_vec.z**2)

            # RUN MODEL
            # control = agent.run_step(measurements, image, directions=2, target=None) # 2: follow straight
            control = agent._compute_action(im, forward_speed, direction=2)
            vehicle.apply_control(control)

            showImage(display, image)
            pygame.display.flip()

    except KeyboardInterrupt:
        pass
    finally:
        print('\nDisabling synchronous mode...')
        settings = world.get_settings()
        settings.synchronous_mode = False
        world.apply_settings(settings)

        print("Destroying actors...")
        for actor in actor_list:
            actor.destroy()
        print("Done.")
コード例 #7
0
 def tick_scenario(self):
     spectator = self._world.get_spectator()
     spectator.set_transform(
         carla.Transform(self._player.get_location() + carla.Location(z=50),
                         carla.Rotation(pitch=-90)))
コード例 #8
0
 def visualize_enu_edge(self, edge, color, z_offset):
     for point in edge:
         carla_point = carla.Location(x=float(point.x),
                                      y=float(-1 * point.y),
                                      z=float(point.z + z_offset))
         self._world.debug.draw_point(carla_point, 0.1, color, 0.1, False)
コード例 #9
0
ファイル: bridge.py プロジェクト: cqxmzz/openpilot
def go(q):

    # setup CARLA
    client = carla.Client("127.0.0.1", 2000)
    client.set_timeout(10.0)
    world = client.load_world(args.town)

    blueprint_library = world.get_blueprint_library()

    world_map = world.get_map()

    vehicle_bp = blueprint_library.filter('vehicle.tesla.*')[1]
    spawn_points = world_map.get_spawn_points()
    assert len(spawn_points) > args.num_selected_spawn_point, \
      f'''No spawn point {args.num_selected_spawn_point}, try a value between 0 and
    {len(spawn_points)} for this town.'''
    spawn_point = spawn_points[args.num_selected_spawn_point]
    vehicle = world.spawn_actor(vehicle_bp, spawn_point)

    max_steer_angle = vehicle.get_physics_control().wheels[0].max_steer_angle

    # make tires less slippery
    # wheel_control = carla.WheelPhysicsControl(tire_friction=5)
    physics_control = vehicle.get_physics_control()
    physics_control.mass = 2326
    # physics_control.wheels = [wheel_control]*4
    physics_control.torque_curve = [[20.0, 500.0], [5000.0, 500.0]]
    physics_control.gear_switch_time = 0.0
    vehicle.apply_physics_control(physics_control)

    blueprint = blueprint_library.find('sensor.camera.rgb')
    blueprint.set_attribute('image_size_x', str(W))
    blueprint.set_attribute('image_size_y', str(H))
    blueprint.set_attribute('fov', '70')
    blueprint.set_attribute('sensor_tick', '0.05')
    transform = carla.Transform(carla.Location(x=0.8, z=1.13))
    camera = world.spawn_actor(blueprint, transform, attach_to=vehicle)
    camera.listen(cam_callback)

    world.set_weather(
        carla.WeatherParameters(
            cloudiness=args.cloudiness,
            precipitation=args.precipitation,
            precipitation_deposits=args.precipitation_deposits,
            wind_intensity=args.wind_intensity,
            sun_azimuth_angle=args.sun_azimuth_angle,
            sun_altitude_angle=args.sun_altitude_angle))

    # reenable IMU
    imu_bp = blueprint_library.find('sensor.other.imu')
    imu = world.spawn_actor(imu_bp, transform, attach_to=vehicle)
    imu.listen(imu_callback)

    def destroy():
        print("clean exit")
        imu.destroy()
        camera.destroy()
        vehicle.destroy()
        print("done")

    atexit.register(destroy)

    vehicle_state = VehicleState()

    # launch fake car threads
    threading.Thread(target=panda_state_function).start()
    threading.Thread(target=fake_driver_monitoring).start()
    threading.Thread(target=fake_gps).start()
    threading.Thread(target=can_function_runner,
                     args=(vehicle_state, )).start()

    # can loop
    rk = Ratekeeper(100, print_delay_threshold=0.05)

    # init
    throttle_ease_out_counter = REPEAT_COUNTER
    brake_ease_out_counter = REPEAT_COUNTER
    steer_ease_out_counter = REPEAT_COUNTER

    vc = carla.VehicleControl(throttle=0, steer=0, brake=0, reverse=False)

    is_openpilot_engaged = False
    throttle_out = steer_out = brake_out = 0
    throttle_op = steer_op = brake_op = 0
    throttle_manual = steer_manual = brake_manual = 0

    old_steer = old_brake = old_throttle = 0
    throttle_manual_multiplier = 0.7  #keyboard signal is always 1
    brake_manual_multiplier = 0.7  #keyboard signal is always 1
    steer_manual_multiplier = 45 * STEER_RATIO  #keyboard signal is always 1

    while 1:
        # 1. Read the throttle, steer and brake from op or manual controls
        # 2. Set instructions in Carla
        # 3. Send current carstate to op via can

        cruise_button = 0
        throttle_out = steer_out = brake_out = 0
        throttle_op = steer_op = brake_op = 0
        throttle_manual = steer_manual = brake_manual = 0

        # --------------Step 1-------------------------------
        if not q.empty():
            message = q.get()
            m = message.split('_')
            if m[0] == "steer":
                steer_manual = float(m[1])
                is_openpilot_engaged = False
            if m[0] == "throttle":
                throttle_manual = float(m[1])
                is_openpilot_engaged = False
            if m[0] == "brake":
                brake_manual = float(m[1])
                is_openpilot_engaged = False
            if m[0] == "reverse":
                #in_reverse = not in_reverse
                cruise_button = CruiseButtons.CANCEL
                is_openpilot_engaged = False
            if m[0] == "cruise":
                if m[1] == "down":
                    cruise_button = CruiseButtons.DECEL_SET
                    is_openpilot_engaged = True
                if m[1] == "up":
                    cruise_button = CruiseButtons.RES_ACCEL
                    is_openpilot_engaged = True
                if m[1] == "cancel":
                    cruise_button = CruiseButtons.CANCEL
                    is_openpilot_engaged = False

            throttle_out = throttle_manual * throttle_manual_multiplier
            steer_out = steer_manual * steer_manual_multiplier
            brake_out = brake_manual * brake_manual_multiplier

            #steer_out = steer_out
            # steer_out = steer_rate_limit(old_steer, steer_out)
            old_steer = steer_out
            old_throttle = throttle_out
            old_brake = brake_out

            # print('message',old_throttle, old_steer, old_brake)

        if is_openpilot_engaged:
            sm.update(0)
            throttle_op = sm['carControl'].actuators.gas  #[0,1]
            brake_op = sm['carControl'].actuators.brake  #[0,1]
            steer_op = sm[
                'controlsState'].steeringAngleDesiredDeg  # degrees [-180,180]

            throttle_out = throttle_op
            steer_out = steer_op
            brake_out = brake_op

            steer_out = steer_rate_limit(old_steer, steer_out)
            old_steer = steer_out

        # OP Exit conditions
        # if throttle_out > 0.3:
        #   cruise_button = CruiseButtons.CANCEL
        #   is_openpilot_engaged = False
        # if brake_out > 0.3:
        #   cruise_button = CruiseButtons.CANCEL
        #   is_openpilot_engaged = False
        # if steer_out > 0.3:
        #   cruise_button = CruiseButtons.CANCEL
        #   is_openpilot_engaged = False

        else:
            if throttle_out == 0 and old_throttle > 0:
                if throttle_ease_out_counter > 0:
                    throttle_out = old_throttle
                    throttle_ease_out_counter += -1
                else:
                    throttle_ease_out_counter = REPEAT_COUNTER
                    old_throttle = 0

            if brake_out == 0 and old_brake > 0:
                if brake_ease_out_counter > 0:
                    brake_out = old_brake
                    brake_ease_out_counter += -1
                else:
                    brake_ease_out_counter = REPEAT_COUNTER
                    old_brake = 0

            if steer_out == 0 and old_steer != 0:
                if steer_ease_out_counter > 0:
                    steer_out = old_steer
                    steer_ease_out_counter += -1
                else:
                    steer_ease_out_counter = REPEAT_COUNTER
                    old_steer = 0

        # --------------Step 2-------------------------------

        steer_carla = steer_out / (max_steer_angle * STEER_RATIO * -1)

        steer_carla = np.clip(steer_carla, -1, 1)
        steer_out = steer_carla * (max_steer_angle * STEER_RATIO * -1)
        old_steer = steer_carla * (max_steer_angle * STEER_RATIO * -1)

        vc.throttle = throttle_out / 0.6
        vc.steer = steer_carla
        vc.brake = brake_out
        vehicle.apply_control(vc)

        # --------------Step 3-------------------------------
        vel = vehicle.get_velocity()
        speed = math.sqrt(vel.x**2 + vel.y**2 + vel.z**2)  # in m/s
        vehicle_state.speed = speed
        vehicle_state.angle = steer_out
        vehicle_state.cruise_button = cruise_button
        vehicle_state.is_engaged = is_openpilot_engaged

        if rk.frame % PRINT_DECIMATION == 0:
            print("frame: ", "engaged:", is_openpilot_engaged, "; throttle: ",
                  round(vc.throttle, 3), "; steer(c/deg): ",
                  round(vc.steer, 3), round(steer_out, 3), "; brake: ",
                  round(vc.brake, 3))

        rk.keep_time()
コード例 #10
0
 def __create_segmentation_lidar_sensor(self):
     return self.__world.spawn_actor(
             create_semantic_lidar_blueprint(self.__world),
             carla.Transform(carla.Location(z=self.Z_SENSOR_REL)),
             attach_to=self.__ego_vehicle,
             attachment_type=carla.AttachmentType.Rigid)