コード例 #1
0
def show_square(client, x, y, z, r,
        rotation=carla.Rotation(), t=1.0,
        c=carla.Color(r=255, g=0, b=0, a=100)):
    """Create a square at a position with radius.
    
    Parameters
    ----------
    client : carla.Client or carla.World
    """
    l = carla.Location(x, y, z)
    carlautil.debug_point(client, l, t=t, c=c)
    carlautil.debug_square(client, l, r, t=t, c=c)
コード例 #2
0
def show_sloped_wps(client, dest=4.0,
        pitch=6.0, t=1.0,
        c=carla.Color(r=255, g=0, b=0, a=100)):
    world = client.get_world()
    carla_map = world.get_map()
    wps = carla_map.generate_waypoints(dest)
    ppitch = (360. - pitch)
    def f(wp):
        wp_pitch = wp.transform.rotation.pitch % 360.
        return wp_pitch > pitch and wp_pitch < ppitch
    sloped_wps = util.filter_to_list(f, wps)
    for wp in sloped_wps:
        loc = wp.transform.location
        carlautil.debug_point(client, loc, t=t, c=c)
コード例 #3
0
    def at_slope_to_label(self, actor):
        """Check wheter actor (i.e. vehicle) is near a slope,
        returning a ScenarioSlopeLabel.

        TODO: make wp_locations array size smaller after debugging.
        Don't need to check non-sloped waypoints.
        """
        actor_location = carlautil.actor_to_location_ndarray(actor)
        actor_xy = actor_location[:2]
        actor_z = actor_location[-1]
        """Want to ignore waypoints above and below (i.e. in the case actor is on a bridge)."""
        upperbound_z = actor.bounding_box.extent.z * 2
        lowerbound_z = -1
        xy_distances_to_wps = np.linalg.norm(self.wp_locations[:, :2] -
                                             actor_xy,
                                             axis=1)
        z_displacement_to_wps = self.wp_locations[:, -1] - actor_z
        """get waypoints close to vehicle filter"""
        wps_filter = np.logical_and(
            xy_distances_to_wps < self.SLOPE_FIND_RADIUS,
            np.logical_and(z_displacement_to_wps < upperbound_z,
                           z_displacement_to_wps > lowerbound_z))

        #####
        """obtain extra slope information"""
        wp_pitches = self.wp_pitches[wps_filter]
        if wp_pitches.size == 0:
            max_wp_pitch = 0.0
        else:
            wp_pitches = np.min(np.vstack((
                wp_pitches,
                np.abs(wp_pitches - 360.),
            )),
                                axis=0)
            max_wp_pitch = np.max(wp_pitches)
        #####

        if self._debug:
            nearby_slopes = np.logical_and(self.wp_is_sloped == True,
                                           wps_filter)
            for wp_location in self.wp_locations[nearby_slopes]:
                loc = carlautil.ndarray_to_location(wp_location)
                carlautil.debug_point(self.carla_world, loc)

        if np.any(self.wp_is_sloped[wps_filter]):
            return ScenarioSlopeLabel.SLOPES, max_wp_pitch
        else:
            return ScenarioSlopeLabel.NONE, max_wp_pitch
コード例 #4
0
    def episode(self, episode_idx):
        logging.info(f"doing episode {episode_idx}")
        ego_vehicle = None
        agent = None
        other_vehicles = []
        stats = util.AttrDict(success=False,
                              infeasibility=False,
                              steps=0,
                              plan_steps=0)

        try:
            spawn_indices = [self.scenario_params.ego_spawn_idx
                             ] + self.scenario_params.other_spawn_ids
            other_vehicle_ids = []
            for k, spawn_idx in enumerate(spawn_indices):
                if k == 0:
                    blueprint = self.blueprint_audi_a2
                else:
                    blueprint = np.random.choice(self.blueprints)
                spawn_point = self.spawn_points[spawn_idx]
                spawn_point = shift_spawn_point(
                    self.carla_map, k, self.scenario_params.spawn_shifts,
                    spawn_point)
                # Prevent collision with road.
                spawn_point.location += carla.Location(0, 0, 0.5)
                vehicle = self.world.spawn_actor(blueprint, spawn_point)
                if k == 0:
                    ego_vehicle = vehicle
                else:
                    vehicle.set_autopilot(True,
                                          self.traffic_manager.get_port())
                    if self.scenario_params.ignore_signs:
                        self.traffic_manager.ignore_signs_percentage(
                            vehicle, 100.)
                    if self.scenario_params.ignore_lights:
                        self.traffic_manager.ignore_lights_percentage(
                            vehicle, 100.)
                    if self.scenario_params.ignore_vehicles:
                        self.traffic_manager.ignore_vehicles_percentage(
                            vehicle, 100.)
                    if not self.scenario_params.auto_lane_change:
                        self.traffic_manager.auto_lane_change(vehicle, False)
                    other_vehicles.append(vehicle)
                    other_vehicle_ids.append(vehicle.id)

            frame = self.world.tick()
            agent = self.motion_planner_cls(
                ego_vehicle,
                self.map_reader,
                other_vehicle_ids,
                self.eval_stg,
                scene_builder_cls=self.scene_builder_cls,
                scene_config=self.online_config,
                **self.scenario_params,
                **self.ctrl_params,
                **self.DEBUG_SETTINGS,
            )
            agent.start_sensor()
            assert agent.sensor_is_listening
            if self.scenario_params.goal:
                agent.set_goal(**self.scenario_params.goal)
            """Setup vehicle routes"""
            if "CARLANAME" in os.environ and os.environ[
                    "CARLANAME"] == "carla-0.9.13":
                for k, vehicle in enumerate(other_vehicles):
                    route = None
                    try:
                        route = self.scenario_params.other_routes[k]
                        len(route)
                    except (TypeError, IndexError) as e:
                        continue
                    self.traffic_manager.set_route(vehicle, route)
            else:
                logging.info("Skipping setting up OV routes.")

            if episode_idx == 0:
                """Move the spectator to the ego vehicle.
                The positioning is a little off"""
                goal = agent.get_goal()
                goal_x, goal_y = goal.x, -goal.y
                state = agent.get_vehicle_state()
                if goal.is_relative:
                    location = carla.Location(x=state[0] + goal_x / 2.,
                                              y=state[1] - goal_y / 2.,
                                              z=state[2] + 50)
                else:
                    location = carla.Location(x=(state[0] + goal_x) / 2.,
                                              y=(state[1] + goal_y) / 2.,
                                              z=state[2] + 50)
                # rotation = carla.Rotation(pitch=-70, yaw=-90, roll=20)
                rotation = carla.Rotation(pitch=-90, yaw=0, roll=0)
                # configure the spectator
                self.world.get_spectator().set_transform(
                    carla.Transform(location, rotation))
                location = carla.Location(goal_x, goal_y, state[2])
                carlautil.debug_point(self.world,
                                      location,
                                      t=60.0,
                                      label="goal")

            n_burn_frames = self.scenario_params.n_burn_interval * self.online_config.record_interval
            if self.ctrl_params.loop_type == LoopEnum.CLOSED_LOOP:
                run_frames = self.scenario_params.run_interval * self.online_config.record_interval
            else:
                run_frames = self.ctrl_params.control_horizon * self.online_config.record_interval - 1
            for idx in range(n_burn_frames):
                control = None
                for ctrl in self.scenario_params.controls:
                    if ctrl.interval[0] <= idx and idx <= ctrl.interval[1]:
                        control = ctrl.control
                        break
                agent.run_step(frame, control=control)
                frame = self.world.tick()

            for idx in range(run_frames):
                agent.run_step(frame)
                frame = self.world.tick()
                stats.steps += 1
                state = agent.get_vehicle_state(flip_y=True)
                goal = agent.get_goal()
                dist = math.sqrt((state[0] - goal.x)**2 +
                                 (state[1] - goal.y)**2)
                if dist < self.TOL:
                    stats.success = True
                    break

        except InSimulationException as e:
            stats.infeasibility = True

        finally:
            if agent:
                agent.destroy()
            if ego_vehicle:
                ego_vehicle.destroy()
            for other_vehicle in other_vehicles:
                other_vehicle.destroy()
            stats.plan_steps = stats.steps / self.online_config.record_interval
            time.sleep(1)

        logging.info(f"episode succeeded? {stats.success}. "
                     f"Infeasibility? {stats.infeasibility}. "
                     f"Ran planner over {stats.steps} total steps; "
                     f"{stats.plan_steps} planning steps.")
        return pd.Series(stats)