コード例 #1
0
 def helper(self,T,prec=10):
     k = 7
     Nvals = [10, 50, 100, 1000, 5000]
     for n in Nvals:
         A = array(random.random((n,n)), dtype=T)
         v = ones((n,1), dtype=T)
         # C++ version
         V = zeros((n,k), dtype=T)
         H = zeros((k+1,k), dtype=T)
         a.arnoldi(A,v,k,V,H)
         # Python version
         Vloc,Hloc = arnoldi(A,v,k)
         # assertion
         assert_almost_equal(norm(H)/n,norm(Hloc)/n,prec)
コード例 #2
0
def matrix_exp_arnoldi_C(A, v, factor, k):
    r"""Compute the solution of :math:`v' = A v` via :math:`k`
    steps of a the Arnoldi krylov method. Uses a C++ implementation.

    :param A: The matrix :math:`A` of shape :math:`N \times N`.
    :param v: The vector :math:`v` of length :math:`N`.
    :param factor: An additional scalar factor :math:`\alpha`.
    :param k: The number :math:`k` of Krylov steps performed.
    :return: The (approximate) value of :math:`\exp\left(-i \alpha A\right) v`.
    """
    # try to import compiled module
    from carnoldi import arnoldi
    k = min(min(A.shape), k)
    V = zeros((A.shape[0],k),dtype=A.dtype)
    H = zeros((k+1,k),dtype=A.dtype)
    arnoldi(A, v, k, V, H)
    eH = mat(expm(-1.0j*factor*H[:-1,:]))
    r = V * eH[:,0]
    return asarray(r * norm(v))
コード例 #3
0
def matrix_exp_arnoldi(A, v, factor, k):
    r"""Compute the solution of :math:`v' = A v` via :math:`k`
    steps of a the Arnoldi krylov method.

    :param A: The matrix :math:`A` of shape :math:`N \times N`.
    :param v: The vector :math:`v` of length :math:`N`.
    :param factor: An additional scalar factor :math:`\alpha`.
    :param k: The number :math:`k` of Krylov steps performed.
    :return: The (approximate) value of :math:`\exp\left(-i \alpha A\right) v`.
    """
    V, H = arnoldi(A, v, min(min(A.shape), k))
    eH = mat(expm(-1.0j*factor*H[:-1,:]))
    r = V[:,:-1] * eH[:,0]
    return asarray(r * norm(v))
コード例 #4
0
        print "current type:", type_to_name[T]
        Tc = []
        Tp = []
        for n in Nvals:
            print "n:", n
            #A = array(diag(2*ones(n)) - diag(ones(n-1),1) - diag(ones(n-1),-1), dtype=t)
            A = array(random.random((n, n)), dtype=T)
            v = ones((n, 1), dtype=T)
            ctime = inf
            ptime = inf
            for r in range(Creps):
                # time C++ version
                V = zeros((n, k), dtype=T)
                H = zeros((k + 1, k), dtype=T)
                t = time.time()
                a.arnoldi(A, v, k, V, H)
                ctime = min(ctime, time.time() - t)
            for r in range(Preps):  # time python version
                t = time.time()
                Vloc, Hloc = arnoldi(A, v, k)
                ptime = min(ptime, time.time() - t)
            Tc.append(ctime)
            Tp.append(ptime)

            normHH = norm(H - Hloc) / norm(H)  # "relative" norm
            epsilon = 1e-5
            if normHH > epsilon:
                print "H-Hloc is not small (%f>%f)!" % (normHH, epsilon)
            del A, v, V, H, Vloc, Hloc

        plt.loglog(Nvals, Tp, '-o', label="Python")
コード例 #5
0
ファイル: demo_arnoldi.py プロジェクト: raoulbq/Arnoldi_PyCpp
    for T in [float32, float64, complex64, complex128]:
        print "current type:", type_to_name[T]
        Tc = []
        Tp = []
        for n in Nvals:
            print "n:",n
            #A = array(diag(2*ones(n)) - diag(ones(n-1),1) - diag(ones(n-1),-1), dtype=t)
            A = array(random.random((n,n)), dtype=T)
            v = ones((n,1), dtype=T)
            ctime = inf; ptime = inf
            for r in range(Creps):
                # time C++ version
                V = zeros((n,k), dtype=T)
                H = zeros((k+1,k), dtype=T)
                t = time.time()
                a.arnoldi(A,v,k,V,H)
                ctime = min(ctime, time.time()-t)
            for r in range(Preps):# time python version
                t = time.time()
                Vloc,Hloc = arnoldi(A,v,k)
                ptime = min(ptime, time.time()-t)
            Tc.append(ctime)
            Tp.append(ptime)
            
            normHH = norm(H-Hloc)/norm(H) # "relative" norm
            epsilon = 1e-5
            if normHH > epsilon:
                print "H-Hloc is not small (%f>%f)!"%(normHH,epsilon)
            del A, v, V, H, Vloc, Hloc

        plt.loglog(Nvals, Tp, '-o', label="Python")