コード例 #1
0
ファイル: test_web_services.py プロジェクト: wsavran/cartopy
def test_wms():
    ax = plt.axes(projection=ccrs.Orthographic())
    url = 'http://vmap0.tiles.osgeo.org/wms/vmap0'
    layer = 'basic'
    ax.add_wms(url, layer)
コード例 #2
0
ファイル: plot_demo_FULL.py プロジェクト: dlilien/specfab
    #----------------------
    # Figure setup
    #----------------------

    dpi, scale = 200, 2.6
    fig = plt.figure(figsize=(2.5 * scale, 1.3 * scale))
    gs = gridspec.GridSpec(1, 2, width_ratios=[1, 1.2])
    a = 0.04
    gs.update(left=a,
              right=1 - a,
              top=0.95,
              bottom=0.16,
              wspace=0.015 * 18,
              hspace=0.25)

    prj = ccrs.Orthographic(rot, 90 - inclination)
    geo = ccrs.Geodetic()
    axdistr = plt.subplot(gs[0, 0], projection=prj)
    axeigvals = plt.subplot(gs[0, 1])

    axdistr.set_global()  # show entire S^2

    #----------------------
    # n(theta,phi) on S^2
    #----------------------

    lvls = np.arange(0, 0.2 + 1e-5, 0.025)  # Contour lvls

    F = np.real(
        np.sum([
            c[tt, ii] * sp.sph_harm(m, l, phi, theta)
コード例 #3
0
#plt.figure(2)
#plt.imshow(pimg,vmin=0, vmax=100,cmap=aurora_cmap())
#plt.imshow(pimg,vmin=0, vmax=100,cmap=aurora_cmap())

plt.figure(1)
plt.plot(pimg)

fig = plt.figure(2, figsize=[20, 10])

# We choose to plot in an Orthographic projection as it looks natural
# and the distortion is relatively small around the poles where
# the aurora is most likely.

# ax1 for Northern Hemisphere
ax1 = fig.add_subplot(1, 2, 1, projection=ccrs.Orthographic(0, 60))
# class cartopy.crs.Orthographic(central_longitude=0.0, central_latitude=0.0, globe=None)[source]

# ax2 for Southern Hemisphere
ax2 = fig.add_subplot(1, 2, 2, projection=ccrs.Orthographic(-100, 60))

#img, crs, extent, origin, dt = aurora_forecast()

fig.set_facecolor((0, 0, 0))

url = 'https://map1c.vis.earthdata.nasa.gov/wmts-geo/wmts.cgi'
layer = 'VIIRS_CityLights_2012'

for ax in [ax1, ax2]:
    ax.coastlines(zorder=3, color='grey', alpha=0.9)
    ax.add_feature(carfeat.BORDERS, zorder=3, alpha=0.9)
コード例 #4
0
ファイル: common.py プロジェクト: xiaoguo123456/DeepMars
def PlateCarree_to_Orthographic(img, llbd, craters, iglobe=None,
                                ctr_sub=False, arad=1737.4, origin="upper",
                                rgcoeff=1.2, slivercut=0.):
    """Transform Plate Carree image and associated csv file into Orthographic.

    Parameters
    ----------
    img : PIL.Image.image or str
        File or filename.
    llbd : list-like
        Long/lat limits (long_min, long_max, lat_min, lat_max) of image.
    craters : pandas.DataFrame
        Craters catalogue.
    iglobe : cartopy.crs.Geodetic instance
        Globe for images.  If False, defaults to spherical Moon.
    ctr_sub : bool, optional
        If `True`, assumes craters dataframe includes only craters within
        image. If `False` (default_, llbd used to cut craters from outside
        image out of (copy of) dataframe.
    arad : float
        World radius in km.  Default is Moon (1737.4 km).
    origin : "lower" or "upper", optional
        Based on imshow convention for displaying image y-axis.  "upper"
        (default) means that [0,0] is upper-left corner of image; "lower" means
        it is bottom-left.
    rgcoeff : float, optional
        Fractional size increase of transformed image height.  By default set
        to 1.2 to prevent loss of fidelity during transform (though warping can
        be so extreme that this might be meaningless).
    slivercut : float from 0 to 1, optional
        If transformed image aspect ratio is too narrow (and would lead to a
        lot of padding, return null images).

    Returns
    -------
    imgo : PIL.Image.image
        Transformed, padded image in PIL.Image format.
    ctr_xy : pandas.DataFrame
        Craters with transformed x, y pixel positions and pixel radii.
    distortion_coefficient : float
        Ratio between the central heights of the transformed image and original
        image.
    centrallonglat_xy : pandas.DataFrame
        xy position of the central longitude and latitude.
    """

    # If user doesn't provide Moon globe properties.
    if not iglobe:
        iglobe = ccrs.Globe(semimajor_axis=arad*1000.,
                            semiminor_axis=arad*1000., ellipse=None)

    # Set up Geodetic (long/lat), Plate Carree (usually long/lat, but not when
    # globe != WGS84) and Orthographic projections.
    geoproj = ccrs.Geodetic(globe=iglobe)
    iproj = ccrs.PlateCarree(globe=iglobe)
    oproj = ccrs.Orthographic(central_longitude=np.mean(llbd[:2]),
                              central_latitude=np.mean(llbd[2:]),
                              globe=iglobe)

    # Create and transform coordinates of image corners and edge midpoints.
    # Due to Plate Carree and Orthographic's symmetries, max/min x/y values of
    # these 9 points represent extrema of the transformed image.
    xll = np.array([llbd[0], np.mean(llbd[:2]), llbd[1]])
    yll = np.array([llbd[2], np.mean(llbd[2:]), llbd[3]])
    xll, yll = np.meshgrid(xll, yll)
    xll = xll.ravel()
    yll = yll.ravel()

    # [:,:2] because we don't need elevation data.
    res = iproj.transform_points(x=xll, y=yll, src_crs=geoproj)[:, :2]
    iextent = [min(res[:, 0]), max(res[:, 0]), min(res[:, 1]), max(res[:, 1])]

    res = oproj.transform_points(x=xll, y=yll, src_crs=geoproj)[:, :2]
    oextent = [min(res[:, 0]), max(res[:, 0]), min(res[:, 1]), max(res[:, 1])]

    # Sanity check for narrow images; done before the most expensive part of
    # the function.
    oaspect = (oextent[1] - oextent[0]) / (oextent[3] - oextent[2])
    if oaspect < slivercut:
        return [None, None, None, None]

    if type(img) != Image.Image:
        img = Image.open(img).convert("L")

    # Warp image.
    imgo, imgwshp, offset = WarpImagePad(img, iproj, iextent, oproj, oextent,
                                         origin=origin, rgcoeff=rgcoeff,
                                         fillbg="black")

    # Convert crater x, y position.
    if ctr_sub:
        llbd_in = None
    else:
        llbd_in = llbd
    ctr_xy = WarpCraterLoc(craters, geoproj, oproj, oextent, imgwshp,
                           llbd=llbd_in, origin=origin)
    # Shift crater x, y positions by offset (origin doesn't matter for y-shift,
    # since padding is symmetric).
    ctr_xy.loc[:, "x"] += offset[0]
    ctr_xy.loc[:, "y"] += offset[1]

    # Pixel scale for orthographic determined (for images small enough that
    # tan(x) approximately equals x + 1/3x^3 + ...) by l = R_moon*theta,
    # where theta is the latitude extent of the centre of the image.  Because
    # projection transform doesn't guarantee central vertical axis will keep
    # its pixel resolution, we need to calculate the conversion coefficient
    #   C = (res[7,1]- res[1,1])/(oextent[3] - oextent[2]).
    #   C0*pix height/C = theta
    # Where theta is the latitude extent and C0 is the theta per pixel
    # conversion for the Plate Carree image).  Thus
    #   l_ctr = R_moon*C0*pix_ctr/C.
    distortion_coefficient = ((res[7, 1] - res[1, 1]) /
                              (oextent[3] - oextent[2]))
    if distortion_coefficient < 0.7:
        raise ValueError("Distortion Coefficient cannot be"
                         " {0:.2f}!".format(distortion_coefficient))
    pixperkm = trf.km2pix(imgo.size[1], llbd[3] - llbd[2],
                          dc=distortion_coefficient, a=arad)
    ctr_xy["Diameter (pix)"] = ctr_xy["Diameter (km)"] * pixperkm

    # Determine x, y position of central lat/long.
    centrallonglat = pd.DataFrame({"Long": [xll[4]], "Lat": [yll[4]]})
    centrallonglat_xy = WarpCraterLoc(centrallonglat, geoproj, oproj, oextent,
                                      imgwshp, llbd=llbd_in, origin=origin)

    # Shift central long/lat
    centrallonglat_xy.loc[:, "x"] += offset[0]
    centrallonglat_xy.loc[:, "y"] += offset[1]

    return [imgo, ctr_xy, distortion_coefficient, centrallonglat_xy]
コード例 #5
0
def plot_cartopy(lons,
                 lats,
                 size,
                 color,
                 labels=None,
                 projection='global',
                 resolution='110m',
                 continent_fill_color='0.8',
                 water_fill_color='1.0',
                 colormap=None,
                 colorbar=None,
                 marker="o",
                 title=None,
                 colorbar_ticklabel_format=None,
                 show=True,
                 proj_kwargs=None,
                 **kwargs):  # @UnusedVariable
    """
    Creates a Cartopy plot with a data point scatter plot.

    :type lons: list/tuple of floats
    :param lons: Longitudes of the data points.
    :type lats: list/tuple of floats
    :param lats: Latitudes of the data points.
    :type size: float or list/tuple of floats
    :param size: Size of the individual points in the scatter plot.
    :type color: list/tuple of floats (or objects that can be
        converted to floats, like e.g.
        :class:`~obspy.core.utcdatetime.UTCDateTime`)
    :param color: Color information of the individual data points to be
        used in the specified color map (e.g. origin depths,
        origin times).
    :type labels: list/tuple of str
    :param labels: Annotations for the individual data points.
    :type projection: str, optional
    :param projection: The map projection.
        Currently supported are:

            * ``"global"`` (Will plot the whole world using
              :class:`~cartopy.crs.Mollweide`.)
            * ``"ortho"`` (Will center around the mean lat/long using
              :class:`~cartopy.crs.Orthographic`.)
            * ``"local"`` (Will plot around local events using
              :class:`~cartopy.crs.AlbersEqualArea`.)
            * Any other Cartopy :class:`~cartopy.crs.Projection`. An instance
              of this class will be created using the supplied ``proj_kwargs``.

        Defaults to "global"
    :type resolution: str, optional
    :param resolution: Resolution of the boundary database to use. Will be
        passed directly to the Cartopy module. Possible values are:

            * ``"110m"``
            * ``"50m"``
            * ``"10m"``

        Defaults to ``"110m"``. For compatibility, you may also specify any of
        the Basemap resolutions defined in :func:`plot_basemap`.
    :type continent_fill_color: Valid matplotlib color, optional
    :param continent_fill_color:  Color of the continents. Defaults to
        ``"0.9"`` which is a light gray.
    :type water_fill_color: Valid matplotlib color, optional
    :param water_fill_color: Color of all water bodies.
        Defaults to ``"white"``.
    :type colormap: str, any matplotlib colormap, optional
    :param colormap: The colormap for color-coding the events as provided
        in `color` kwarg.
        The event with the smallest `color` property will have the
        color of one end of the colormap and the event with the highest
        `color` property the color of the other end with all other events
        in between.
        Defaults to None which will use the default matplotlib colormap.
    :type colorbar: bool, optional
    :param colorbar: When left `None`, a colorbar is plotted if more than one
        object is plotted. Using `True`/`False` the colorbar can be forced
        on/off.
    :type title: str
    :param title: Title above plot.
    :type colorbar_ticklabel_format: str or function or
        subclass of :class:`matplotlib.ticker.Formatter`
    :param colorbar_ticklabel_format: Format string or Formatter used to format
        colorbar tick labels.
    :type show: bool
    :param show: Whether to show the figure after plotting or not. Can be used
        to do further customization of the plot before showing it.
    :type proj_kwargs: dict
    :param proj_kwargs: Keyword arguments to pass to the Cartopy
        :class:`~cartopy.ccrs.Projection`. In this dictionary, you may specify
        ``central_longitude='auto'`` or ``central_latitude='auto'`` to have
        this function calculate the latitude or longitude as it would for other
        projections. Some arguments may be ignored if you choose one of the
        built-in ``projection`` choices.
    """
    import matplotlib.pyplot as plt

    if isinstance(color[0], (datetime.datetime, UTCDateTime)):
        datetimeplot = True
        color = [date2num(getattr(t, 'datetime', t)) for t in color]
    else:
        datetimeplot = False

    fig = plt.figure()

    # The colorbar should only be plotted if more then one event is
    # present.
    if colorbar is not None:
        show_colorbar = colorbar
    else:
        if len(lons) > 1 and hasattr(color, "__len__") and \
                not isinstance(color, (str, native_str)):
            show_colorbar = True
        else:
            show_colorbar = False

    if projection == "local":
        ax_x0, ax_width = 0.10, 0.80
    elif projection == "global":
        ax_x0, ax_width = 0.01, 0.98
    else:
        ax_x0, ax_width = 0.05, 0.90

    proj_kwargs = proj_kwargs or {}
    if projection == 'global':
        proj_kwargs['central_longitude'] = np.mean(lons)
        proj = ccrs.Mollweide(**proj_kwargs)
    elif projection == 'ortho':
        proj_kwargs['central_latitude'] = np.mean(lats)
        proj_kwargs['central_longitude'] = mean_longitude(lons)
        proj = ccrs.Orthographic(**proj_kwargs)
    elif projection == 'local':
        if min(lons) < -150 and max(lons) > 150:
            max_lons = max(np.array(lons) % 360)
            min_lons = min(np.array(lons) % 360)
        else:
            max_lons = max(lons)
            min_lons = min(lons)
        lat_0 = max(lats) / 2. + min(lats) / 2.
        lon_0 = max_lons / 2. + min_lons / 2.
        if lon_0 > 180:
            lon_0 -= 360
        deg2m_lat = 2 * np.pi * 6371 * 1000 / 360
        deg2m_lon = deg2m_lat * np.cos(lat_0 / 180 * np.pi)
        if len(lats) > 1:
            height = (max(lats) - min(lats)) * deg2m_lat
            width = (max_lons - min_lons) * deg2m_lon
            margin = 0.2 * (width + height)
            height += margin
            width += margin
        else:
            height = 2.0 * deg2m_lat
            width = 5.0 * deg2m_lon
        # Do intelligent aspect calculation for local projection
        # adjust to figure dimensions
        w, h = fig.get_size_inches()
        aspect = w / h
        if show_colorbar:
            aspect *= 1.2
        if width / height < aspect:
            width = height * aspect
        else:
            height = width / aspect

        proj_kwargs['central_latitude'] = lat_0
        proj_kwargs['central_longitude'] = lon_0
        proj = ccrs.AlbersEqualArea(**proj_kwargs)

    # User-supplied projection.
    elif isinstance(projection, type):
        if 'central_longitude' in proj_kwargs:
            if proj_kwargs['central_longitude'] == 'auto':
                proj_kwargs['central_longitude'] = mean_longitude(lons)
        if 'central_latitude' in proj_kwargs:
            if proj_kwargs['central_latitude'] == 'auto':
                proj_kwargs['central_latitude'] = np.mean(lats)
        if 'pole_longitude' in proj_kwargs:
            if proj_kwargs['pole_longitude'] == 'auto':
                proj_kwargs['pole_longitude'] = np.mean(lons)
        if 'pole_latitude' in proj_kwargs:
            if proj_kwargs['pole_latitude'] == 'auto':
                proj_kwargs['pole_latitude'] = np.mean(lats)

        proj = projection(**proj_kwargs)

    else:
        msg = "Projection '%s' not supported." % projection
        raise ValueError(msg)

    if show_colorbar:
        map_ax = fig.add_axes([ax_x0, 0.13, ax_width, 0.77], projection=proj)
        cm_ax = fig.add_axes([ax_x0, 0.05, ax_width, 0.05])
        plt.sca(map_ax)
    else:
        ax_y0, ax_height = 0.05, 0.85
        if projection == "local":
            ax_y0 += 0.05
            ax_height -= 0.05
        map_ax = fig.add_axes([ax_x0, ax_y0, ax_width, ax_height],
                              projection=proj)

    if projection == 'local':
        x0, y0 = proj.transform_point(lon_0, lat_0, proj.as_geodetic())
        map_ax.set_xlim(x0 - width / 2, x0 + width / 2)
        map_ax.set_ylim(y0 - height / 2, y0 + height / 2)
    else:
        map_ax.set_global()

    # Pick features at specified resolution.
    resolution = _CARTOPY_RESOLUTIONS[resolution]
    try:
        borders, land, ocean = _CARTOPY_FEATURES[resolution]
    except KeyError:
        borders = cfeature.NaturalEarthFeature(cfeature.BORDERS.category,
                                               cfeature.BORDERS.name,
                                               resolution,
                                               edgecolor='none',
                                               facecolor='none')
        land = cfeature.NaturalEarthFeature(cfeature.LAND.category,
                                            cfeature.LAND.name,
                                            resolution,
                                            edgecolor='face',
                                            facecolor='none')
        ocean = cfeature.NaturalEarthFeature(cfeature.OCEAN.category,
                                             cfeature.OCEAN.name,
                                             resolution,
                                             edgecolor='face',
                                             facecolor='none')
        _CARTOPY_FEATURES[resolution] = (borders, land, ocean)

    # Draw coast lines, country boundaries, fill continents.
    if MATPLOTLIB_VERSION >= [2, 0, 0]:
        map_ax.set_facecolor(water_fill_color)
    else:
        map_ax.set_axis_bgcolor(water_fill_color)
    map_ax.add_feature(ocean, facecolor=water_fill_color)
    map_ax.add_feature(land, facecolor=continent_fill_color)
    map_ax.add_feature(borders, edgecolor='0.75')
    map_ax.coastlines(resolution=resolution, color='0.4')

    # Draw grid lines - TODO: draw_labels=True doesn't work yet.
    if projection == 'local':
        map_ax.gridlines()
    else:
        # Draw lat/lon grid lines every 30 degrees.
        map_ax.gridlines(xlocs=range(-180, 181, 30), ylocs=range(-90, 91, 30))

    # Plot labels
    if labels and len(lons) > 0:
        with map_ax.hold_limits():
            for name, xpt, ypt, _colorpt in zip(labels, lons, lats, color):
                map_ax.text(xpt,
                            ypt,
                            name,
                            weight="heavy",
                            color="k",
                            zorder=100,
                            transform=ccrs.Geodetic(),
                            path_effects=[
                                PathEffects.withStroke(linewidth=3,
                                                       foreground="white")
                            ])

    scatter = map_ax.scatter(lons,
                             lats,
                             marker=marker,
                             s=size,
                             c=color,
                             zorder=10,
                             cmap=colormap,
                             transform=ccrs.Geodetic())

    if title:
        plt.suptitle(title)

    # Only show the colorbar for more than one event.
    if show_colorbar:
        if colorbar_ticklabel_format is not None:
            if isinstance(colorbar_ticklabel_format, (str, native_str)):
                formatter = FormatStrFormatter(colorbar_ticklabel_format)
            elif hasattr(colorbar_ticklabel_format, '__call__'):
                formatter = FuncFormatter(colorbar_ticklabel_format)
            elif isinstance(colorbar_ticklabel_format, Formatter):
                formatter = colorbar_ticklabel_format
            locator = MaxNLocator(5)
        else:
            if datetimeplot:
                locator = AutoDateLocator()
                formatter = AutoDateFormatter(locator)
                # Compat with old matplotlib versions.
                if hasattr(formatter, "scaled"):
                    formatter.scaled[1 / (24. * 60.)] = '%H:%M:%S'
            else:
                locator = None
                formatter = None
        cb = Colorbar(cm_ax,
                      scatter,
                      cmap=colormap,
                      orientation='horizontal',
                      ticks=locator,
                      format=formatter)
        # Compat with old matplotlib versions.
        if hasattr(cb, "update_ticks"):
            cb.update_ticks()

    if show:
        plt.show()

    return fig
コード例 #6
0
ファイル: test_images.py プロジェクト: DJDruid/cartopy
def test_background_img():
    ax = plt.axes(projection=ccrs.Orthographic())
    ax.background_img(name='ne_shaded', resolution='low')
コード例 #7
0
def test_LongitudeFormatter_bad_projection():
    formatter = LongitudeFormatter()
    formatter.axis = Mock(axes=Mock(GeoAxes, projection=ccrs.Orthographic()))
    message = 'This formatter cannot be used with non-rectangular projections.'
    with assert_raises_regex(TypeError, message):
        formatter(0)
コード例 #8
0
ファイル: plot_map.py プロジェクト: amckinstry/ocean-analysis
    'PlateCarree':
    ccrs.PlateCarree(),
    'PlateCarree_Dateline':
    ccrs.PlateCarree(central_longitude=180.0),
    'Mollweide_Dateline':
    ccrs.Mollweide(central_longitude=180.0),
    'Mollweide':
    ccrs.Mollweide(),
    'Robinson_Dateline':
    ccrs.Robinson(central_longitude=180.0),
    'Robinson':
    ccrs.Robinson(),
    'SouthPolarStereo':
    ccrs.SouthPolarStereo(),
    'Orthographic':
    ccrs.Orthographic(central_longitude=240, central_latitude=-45),
    'RotatedPole_260E_20N_shift180':
    ccrs.RotatedPole(260, 20, central_rotated_longitude=180),
}

line_style_dict = {'dashed': '--', 'solid': '-'}

hatch_style_dict = {
    'dots': '.',
    'fwdlines_wide': '/',
    'bwdlines_normal': '\\',
    'bwdlines_tight': '\\\\',
    'stars': '*'
}

コード例 #9
0
def plot_antenna_distribution(
    source_lon,
    source_lat,
    source,
    antenna,
    baselines=False,
    end=False,
    lon_start=None,
    lat_start=None,
    out_path=None,
):
    x, y, z = source.to_ecef(val=[source_lon, source_lat])  # only use source ?
    x_enu_ant, y_enu_ant = antenna.to_enu(x, y, z)

    plt.figure(figsize=(5.78, 3.57), dpi=100)
    ax = plt.axes(projection=ccrs.Orthographic(source_lon, source_lat))
    ax.set_global()
    ax.coastlines()

    plt.plot(
        x_enu_ant,
        y_enu_ant,
        marker="o",
        markersize=3,
        color="#1f77b4",
        linestyle="none",
        label="Antenna positions",
    )
    plt.plot(
        x,
        y,
        marker="*",
        linestyle="none",
        color="#ff7f0e",
        markersize=10,
        transform=ccrs.Geodetic(),
        zorder=10,
        label="Projected source",
    )

    if baselines:
        plot_baselines(antenna)  # projected baselines

    if end:
        x_start, y_start, _ = source.to_ecef(val=[lon_start, lat_start])

        ax.plot(
            np.array([x, x_start]),
            np.array([y, y_start]),
            marker=".",
            linestyle="--",
            color="#d62728",
            linewidth=1,
            transform=ccrs.Geodetic(),
            zorder=10,
            label="Source path",
        )
        ax.plot(
            x_start,
            y_start,
            marker=".",
            color="green",
            zorder=10,
            label="hi",
            transform=ccrs.Geodetic(),
        )

    plt.legend(
        fontsize=9, markerscale=1.5, bbox_to_anchor=(0.95, 1), loc=2, borderaxespad=0.0
    )

    if out_path is not None:
        plt.savefig(out_path, dpi=100, bbox_inches="tight", pad_inches=0.05)
コード例 #10
0
ファイル: create_smc.py プロジェクト: metocean/pysmc
from datetime import datetime
import matplotlib.pyplot as plt

#import sys; sys.path.append('/media/qliu/Zuoer_dream/mylib')
#import pyutil.SMCGrid as smc
from SMCPy import SMCGrid as smc

# -- 1. important parms
debug = 0
genGrid = 0
plotonly = (genGrid == 0)
gen_cell_sides = 0
matFnm = 'glb2d.nc'
# proj=ccrs.Robinson(central_longitude=0.)
# proj=ccrs.PlateCarree(central_longitude=180.)
proj = ccrs.Orthographic(central_longitude=180.0, central_latitude=-90)

# -- 2. gen grid
glbBathy = smc.NCBathy(matFnm, debug=debug)
smc.GenSMCGrid(bathy_obj=glbBathy,
               gen_cell_sides=gen_cell_sides,
               debug=debug,
               plotonly=plotonly)

# -- 3. Create Grid from file and plot the cells
smcFnm = 'GLB2DCell.dat'
obsFnm = 'GLB2DObs.dat'
glbSMC = smc.UnSMC(smcFnm,
                   dlon=glbBathy.dlon,
                   dlat=glbBathy.dlat,
                   refp=glbBathy.refp)  #, proj=proj)
コード例 #11
0
)
ds.plot.scatter(x="Te", y="Hm0", c='k', ax=ax, s=2, alpha=0.5)
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.set_xlim(Te_lims)
ax.set_ylim(Hm0_lims)
fig.savefig(base_name + '_hist2d.pdf')

#%%

fig, ax = plt.subplots(subplot_kw={'projection': ccrs.PlateCarree()})
ds.plot.scatter(
    x='spot_lon',
    y='spot_lat',
    ax=ax,
    subplot_kws=dict(projection=ccrs.Orthographic(-80, 35), facecolor="gray"),
    transform=ccrs.PlateCarree(),
    label='Spotter',
)
ds.plot.scatter(
    x='wec_lon',
    y='wec_lat',
    ax=ax,
    subplot_kws=dict(projection=ccrs.Orthographic(-80, 35), facecolor="gray"),
    transform=ccrs.PlateCarree(),
    label='WEC',
)

ax.legend()
gl = ax.gridlines(
    crs=ccrs.PlateCarree(),
コード例 #12
0
def plot_sh_on_sphere(ell, m, args):
    #ensure valid input
    assert np.abs(m) <= ell
    assert np.abs(args.inc) <= 180

    outfile = args.outfile
    if outfile is None:
        outfile = 'l{0}m{1}_ss{2}.gif'.format(ell, m,
                                              '_s' if args.square else '')

    plotcrs = ccrs.Orthographic(0, 90 - args.inc)

    #compute spherical harmonic
    lon = np.linspace(0, 2 * np.pi, args.nlon) - np.pi
    lat = np.linspace(-np.pi / 2, np.pi / 2, args.nlat)
    colat = lat + np.pi / 2
    d = np.zeros((len(lon), len(colat)), dtype=np.complex64)
    for j, yy in enumerate(colat):
        for i, xx in enumerate(lon):
            d[i, j] = sp.sph_harm(m, ell, xx, yy)

    # set up figure
    fig = plt.figure(figsize=(args.size, args.size), tight_layout={'pad': 1})
    ax = plt.subplot(projection=plotcrs)

    if args.square:
        d = abs(d)

    vlim = np.max(np.real(d))

    # Animate:
    def animate(i):
        drm = np.transpose(
            np.real(d *
                    np.exp(-1.j *
                           (2. * np.pi * float(i) / np.float(args.nframes)))))
        sys.stdout.write("\rFrame {0} of {1}".format(i + 1, args.nframes))
        sys.stdout.flush()
        ax.clear()
        ax.pcolormesh(lon * 180 / np.pi,
                      lat * 180 / np.pi,
                      drm,
                      transform=ccrs.PlateCarree(),
                      cmap='seismic',
                      vmin=-vlim if not args.square else 0,
                      vmax=vlim,
                      shading='flat')
        ax.relim()
        ax.autoscale_view()

    def init():
        animate(0)

    if m != 0 and not args.square:
        interval = args.duration / np.float(args.nframes)

        anim = animation.FuncAnimation(fig,
                                       animate,
                                       init_func=init,
                                       frames=args.nframes,
                                       interval=interval,
                                       blit=False)
        anim.save(outfile,
                  dpi=args.dpi,
                  fps=1. / interval,
                  writer='imagemagick')

        print('\nWrote ' + outfile)

    else:  # no need for an animation for those parameters
        animate(0)
        fig.savefig(outfile.replace('gif', 'png'), dpi=args.dpi)

        print('\nWrote ' + outfile.replace('gif', 'png'))
コード例 #13
0
ファイル: icon.py プロジェクト: shawndegroot/psyplot
This script creates the psyplot icon with a dpi of 128 and a width and height
of 8 inches. The file is saved it to ``'icon1024.pkl'``"""

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cf
from matplotlib.text import FontProperties

# The path to the font
fontpath = '/Library/Fonts/FreeSansBoldOblique.ttf'

fig = plt.figure(figsize=(8, 8), dpi=128)

ax = fig.add_axes([0.0, 0.0, 1.0, 1.0],
                  projection=ccrs.Orthographic(central_latitude=5))

land = ax.add_feature(cf.LAND, facecolor='0.975')
ocean = ax.add_feature(cf.OCEAN, facecolor=plt.get_cmap('Blues')(0.5))

text = ax.text(0.47,
               0.5,
               'Psy',
               transform=fig.transFigure,
               name='FreeSans',
               fontproperties=FontProperties(fname=fontpath),
               size=256,
               ha='center',
               va='center',
               weight=400)
コード例 #14
0
import numpy as np
import scipy.special as sp
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import cartopy.crs as ccrs

from specfabpy import specfabpy as sf

#------------------
# Plot resolution and options
#------------------

inclination = 60  # View angle
rot = -90  # View angle
prj, geo = ccrs.Orthographic(rot, 90 - inclination), ccrs.Geodetic()

latres = 20
lonres = 2 * latres
phi = np.linspace(0, 2 * np.pi, lonres)  # LON
theta = np.linspace(0, np.pi, latres)  # CO-LAT
phi, theta = np.meshgrid(phi, theta)
lon, colat = phi, theta
lat = np.pi / 2 - colat

lvls = np.linspace(0, 0.4, 6)  # Contour levels

#------------------
# Plot function
#------------------
コード例 #15
0
ファイル: test_images.py プロジェクト: DJDruid/cartopy
def test_stock_img():
    ax = plt.axes(projection=ccrs.Orthographic())
    ax.stock_img()
コード例 #16
0
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs

air = (xr.tutorial.load_dataset('air_temperature').air.isel(time=0))

ax = plt.axes(projection=ccrs.Orthographic(-80, 35))
ax.set_global()
air.plot.contourf(ax=ax, transform=ccrs.PlateCarree())
ax.coastlines()

plt.savefig('cartopy_example.png')
コード例 #17
0
ファイル: test_images.py プロジェクト: DJDruid/cartopy
def test_pil_Image():
    img = Image.open(NATURAL_EARTH_IMG)
    source_proj = ccrs.PlateCarree()
    ax = plt.axes(projection=ccrs.Orthographic())
    ax.imshow(img, transform=source_proj, extent=[-180, 180, -90, 90])
コード例 #18
0
eof1_norm = (eof1.sel(mode=0) * (-1)) / eof1.sel(mode=0).std()
"""Daily and monthly AO indices are constructed by projecting the daily and
monthly mean 1000-hPa  height anomalies onto the leading EOF mode.
Both time series are normalized by the standard deviation of the monthly
index (1979-2000 base period” - NOAA """
f = f - f.hgt.mean(dim='time')
f = f.groupby('time.month') - f.hgt.groupby('time.month').mean()

pseudo_pcs_era = ((solver.projectField(f.hgt) * (-1)) /
                  solver.pcs(npcs=1).std())

eof1 = eof1 * (-1)
# Plot the leading EOF expressed as covariance in the European/Atlantic domain.
clevs = np.linspace(-50, 50, 12)
proj = ccrs.Orthographic(0, 90)
# ax = plt.axes(projection=proj)
plt.figure()
ax = plt.subplot(projection=ccrs.Orthographic(0, 90))
ax.coastlines()
ax.set_global()
eof1.sel(mode=0).plot.pcolormesh(levels=clevs,
                                 cmap=plt.cm.RdBu_r,
                                 transform=ccrs.PlateCarree())

ax.set_title('EOF1 expressed as covariance ' +
             str(round(var1.values * 100, 2)) + '%',
             fontsize=16)
plt.show(block=False)
"""
######################################################
コード例 #19
0
def permafrost_area(soiltemp, airtemp, landfrac, run):
    """Calculate the permafrost area and make a plot."""
    # Define parameters of the test to calculate the existence of permafrost
    thresh_temperature = 273.2
    frozen_months = 24
    prop_months_frozen = 0.5  # frozen for at least half of the simulation

    # make a mask of land fraction over non iced areas and extract northern
    # latitudes
    nonice = get_nonice_mask(run)
    mask = iris.analysis.maths.multiply(nonice, landfrac)
    mask = mask.extract(iris.Constraint(latitude=lambda cell: cell > 0))

    # extract northern high latitudes [and deeepst soil level]
    soiltemp = soiltemp.extract(iris.Constraint(depth=2.0))  # from 1m to 3m

    # Make an aggregator to define the permafrost extent
    # I dont really understand this but it works
    frozen_count = iris.analysis.Aggregator('frozen_count',
                                            num_frozen,
                                            units_func=lambda units: 1)

    # Calculate the permafrost locations
    pf_periods = soiltemp.collapsed('time',
                                    frozen_count,
                                    threshold=thresh_temperature,
                                    frozen_length=frozen_months)
    tot_time = len(soiltemp.coord('time').points)
    pf_periods = pf_periods / float(tot_time)
    pf_periods.rename('Fraction of months layer 4 (-1m to -3m) soil is frozen')

    # mask out non permafrost points, sea points and ice points
    pf_periods.data = np.ma.masked_less(pf_periods.data, prop_months_frozen)
    # set all non-masked values to 1 for area calculation
    # (may be a better way of doing this but I'm not sure what it is)
    pf_periods = pf_periods / pf_periods
    # mask for land area also
    pf_periods = pf_periods * mask

    # calculate the area of permafrost
    # Generate area-weights array. This method requires bounds on lat/lon
    # coords, add some in sensible locations using the "guess_bounds"
    # method.
    for coord in ['latitude', 'longitude']:
        if not pf_periods.coord(coord).has_bounds():
            pf_periods.coord(coord).guess_bounds()
    grid_areas = iris.analysis.cartography.area_weights(pf_periods)
    # calculate the areas not masked in pf_periods
    pf_area = pf_periods.collapsed(['longitude', 'latitude'],
                                   iris.analysis.SUM,
                                   weights=grid_areas).data

    # what is the area where the temperature is less than 0 degrees C?
    airtemp = airtemp.collapsed('time', iris.analysis.MEAN)
    # if more than 2 dims, select the ground level
    if airtemp.ndim > 2:
        airtemp = airtemp[0]
    airtemp_below_zero = np.where(airtemp.data < 273.2, 1, 0)
    airtemp_area = np.sum(airtemp_below_zero * grid_areas)

    pf_prop = pf_area / airtemp_area
    pf_area = pf_area / 1e12

    # Figure Permafrost extent north america
    plt.figure(figsize=(8, 8))
    ax = plt.axes(projection=ccrs.Orthographic(central_longitude=-80.0,
                                               central_latitude=60.0))
    qplt.pcolormesh(pf_periods)
    ax.gridlines()
    ax.coastlines()
    levels = [thresh_temperature]
    qplt.contour(airtemp, levels, colors='k', linewidths=3)
    plt.title('Permafrost extent & zero degree isotherm ({})'.format(
        run['runid']))
    plt.savefig('pf_extent_north_america_' + run['runid'] + '.png')

    # Figure Permafrost extent asia
    plt.figure(figsize=(8, 8))
    ax = plt.axes(projection=ccrs.Orthographic(central_longitude=100.0,
                                               central_latitude=50.0))
    qplt.pcolormesh(pf_periods)
    ax.gridlines()
    ax.coastlines()
    levels = [thresh_temperature]
    qplt.contour(airtemp, levels, colors='k', linewidths=3)
    plt.title('Permafrost extent & zero degree isotherm ({})'.format(
        run['runid']))
    plt.savefig('pf_extent_asia_' + run['runid'] + '.png')

    # defining metrics for return up to top level
    metrics = {
        'permafrost area': pf_area,
        'fraction area permafrost over zerodeg': pf_prop,
    }

    return metrics
コード例 #20
0
ファイル: hgt_example.py プロジェクト: raybellwaves/eofs
filename = example_data_path('hgt_djf.nc')
ncin = cdms2.open(filename, 'r')
z_djf = ncin('z')
ncin.close()

# Compute anomalies by removing the time-mean.
z_djf_mean = cdutil.averager(z_djf, axis='t')
z_djf = z_djf - z_djf_mean
z_djf.id = 'z'

# Create an EOF solver to do the EOF analysis. Square-root of cosine of
# latitude weights are applied before the computation of EOFs.
solver = Eof(z_djf, weights='coslat')

# Retrieve the leading EOF, expressed as the covariance between the leading PC
# time series and the input SLP anomalies at each grid point.
eof1 = solver.eofsAsCovariance(neofs=1)

# Plot the leading EOF expressed as covariance in the European/Atlantic domain.
clevs = np.linspace(-75, 75, 11)
lons, lats = eof1.getLongitude()[:], eof1.getLatitude()[:]
proj = ccrs.Orthographic(central_longitude=-20, central_latitude=60)
ax = plt.axes(projection=proj)
ax.set_global()
ax.coastlines()
ax.contourf(lons, lats, eof1(squeeze=True), levels=clevs,
            cmap=plt.cm.RdBu_r, transform=ccrs.PlateCarree())
plt.title('EOF1 expressed as covariance', fontsize=16)

plt.show()
コード例 #21
0
    density_bottom = 3000
    slope = (density_top - density_bottom) / (top - bottom)
    return slope * (radius - bottom) + density_bottom


# Define computation points on a regular grid at 100km above the mean Earth
# radius
coordinates = vd.grid_coordinates(
    region=[-80, -40, -50, -10],
    shape=(80, 80),
    extra_coords=100e3 + ellipsoid.mean_radius,
)

# Compute the radial component of the acceleration
gravity = hm.tesseroid_gravity(coordinates, tesseroids, density, field="g_z")
print(gravity)

# Plot the gravitational field
fig = plt.figure(figsize=(8, 9))
ax = plt.axes(projection=ccrs.Orthographic(central_longitude=-60))
img = ax.pcolormesh(*coordinates[:2], gravity, transform=ccrs.PlateCarree())
plt.colorbar(img,
             ax=ax,
             pad=0,
             aspect=50,
             orientation="horizontal",
             label="mGal")
ax.coastlines()
ax.set_title("Downward component of gravitational acceleration")
plt.show()
コード例 #22
0
def plot_data_locs(haarpLoc,
                   radarFnames,
                   ionoFnames,
                   axExtent=[-180, 180, 40, 90]):

    slant_range = 4000
    # Load the radar locations
    radars = {}
    for r, fn in radarFnames.items():
        radar = nc_utils.load_nc(fn)
        fovpts = np.ones((len(radar.brng_at_15deg_el), 2))
        for ind, brng in enumerate(radar.brng_at_15deg_el):
            beam_off = brng - radar.boresight
            fovpts[ind, :] = calcFieldPnt(
                radar.lat,
                radar.lon,
                radar.alt,
                radar.boresight,
                beam_off,
                slant_range,
                hop=2,
                adjusted_sr=False,
                altitude=300,
            )
        radars[r] = {
            'lon': radar.lon,
            'lat': radar.lat,
            'alt': radar.alt,
            'fovpts': fovpts,
        }

    ionosondes = {}
    # Load the ionosondes
    for io, fn in ionoFnames.items():
        iono = nc_utils.load_nc(fn)
        lon = iono.lon
        if lon > 180:
            lon -= 360
        ionosondes[io] = [iono.lat, lon]

    # Plot the data locations on a map
    rp = -130, 55
    ax = plt.axes(projection=ccrs.Orthographic(*rp))
    data_crs = ccrs.Geodetic()
    ax.add_feature(cfeature.OCEAN, zorder=0)
    ax.add_feature(cfeature.LAND, zorder=0, edgecolor='black')
    ax.add_feature(cfeature.BORDERS, linestyle=':')

    ax.set_global()
    # ax.gridlines()

    # Plot the radars and FOVs
    for rn, radar in radars.items():
        ax.plot(radar['lon'],
                radar['lat'],
                marker='.',
                color='k',
                markersize=5,
                transform=data_crs)
        for ind, brng in enumerate(radar['fovpts'][:, 0]):
            ax.plot(
                [radar['lon'], radar['fovpts'][ind, 1]],
                [radar['lat'], radar['fovpts'][ind, 0]],
                color='k',
                transform=data_crs,
                linewidth=0.3,
            )
    ax.plot(haarpLoc[1],
            haarpLoc[0],
            marker='.',
            color='red',
            markersize=15,
            transform=data_crs)

    # Plot the radar labels
    geodetic_transform = ccrs.Geodetic()._as_mpl_transform(ax)
    text_transform = offset_copy(geodetic_transform, units='dots', x=-25)
    for rn, radar in radars.items():
        rn = rn.split('.')[0].upper()
        plt.text(radar['lon'],
                 radar['lat'],
                 rn,
                 verticalalignment='center',
                 horizontalalignment='right',
                 transform=text_transform,
                 bbox=dict(facecolor='sandybrown', boxstyle='round'))

    # Plot the ionosondes
    for rn, iono in ionosondes.items():

        ax.plot(iono[1],
                iono[0],
                marker='.',
                color='b',
                markersize=7,
                transform=data_crs)
        if rn == 'GAKONA':
            plt.text(iono[1] + 3,
                     iono[0],
                     'HAARP',
                     verticalalignment='center',
                     horizontalalignment='left',
                     transform=text_transform,
                     bbox=dict(facecolor='red', boxstyle='round'))
        elif rn == 'EIELSON':
            plt.text(iono[1],
                     iono[0],
                     'Eielson',
                     verticalalignment='center',
                     horizontalalignment='right',
                     transform=text_transform,
                     bbox=dict(facecolor='lightblue', boxstyle='round'))
        elif rn == 'IDAHONATIONALLAB':
            plt.text(iono[1] + 3,
                     iono[0],
                     'Idaho National Lab',
                     verticalalignment='center',
                     horizontalalignment='left',
                     transform=text_transform,
                     bbox=dict(facecolor='lightblue', boxstyle='round'))

    plt.show()
コード例 #23
0
import cartopy.crs as ccrs

# co-ordinates taken from Wikipedia article on BiSON 2017-11-20 11:27
coords = {
    'Mount Wilson': (34.22, -118.07),
    'Las Campanas': (-29.01597, -70.69208),
    'Teide Observatory': (28.3, -16.5097),
    # 'SAAO': (-33.9347, 18.4776),
    'Sutherland': (-32.376006, 20.810678),
    'Carnarvon': (-24.869167, 113.704722),
    'Paul Wild Observatory': (-30.314, 149.562),
    'University of Birmingham': (52.450556, -1.930556)
}

lon0, lat0 = -45, 0
ax = pl.subplot(1, 2, 1, projection=ccrs.Orthographic(lon0,
                                                      lat0))  # (lon, lat)
ax.set_global()

ax.add_feature(cartopy.feature.OCEAN, zorder=0)
ax.add_feature(cartopy.feature.LAND, zorder=0, edgecolor='black')

for lat, lon in coords.values():
    if lon0 - 90 < lon < lon0 + 90:
        pl.plot(lon, lat, 'ro', transform=ccrs.PlateCarree())

lon0, lat0 = 135, 0
ax = pl.subplot(1, 2, 2, projection=ccrs.Orthographic(lon0,
                                                      lat0))  # (lon, lat)
ax.set_global()
ax.add_feature(cartopy.feature.OCEAN, zorder=0)
ax.add_feature(cartopy.feature.LAND, zorder=0, edgecolor='black')
コード例 #24
0
def plot_radars(radars, radarFnames, time, haarpLat, haarpLon, outFname=None):

    rp = -130, 55
    transform = ccrs.Geodetic()
    ax = plt.axes(projection=ccrs.Orthographic(*rp))
    ax.add_feature(cfeature.LAND)
    ax.add_feature(cfeature.OCEAN)
    ax.add_feature(cfeature.COASTLINE)
    ax.add_feature(cfeature.BORDERS, linestyle=':')
    gl = ax.gridlines(
        crs=ccrs.PlateCarree(),
        draw_labels=True,
        linewidth=0.5,
        color='gray',
        linestyle='-',
    )
    gl.xformatter = LONGITUDE_FORMATTER
    gl.yformatter = LATITUDE_FORMATTER

    style = {'size': 10, 'color': 'gray'}
    gl.xlabel_style = style
    gl.ylabel_style = style
    gl.top_labels = False
    gl.right_labels = False

    ax.set_global()

    for radar, rg_b in radars.items():
        inFname = radarFnames[radar]
        print('plotting %s' % inFname)

        bm = rg_b[1]
        rg = rg_b[0]

        data = nc_utils.ncread_vars(inFname)
        rgi = (data['range'] > rg[0]) & (data['range'] < rg[1])
        for k, v in data.items():
            data[k] = v[rgi]
        if 'kod' in radar:
            data['v'][:] = -1000
        else:
            data['v'][:] = 1000
        hdr = nc_utils.load_nc(inFname)
        ax.plot(
            hdr.lon,
            hdr.lat,
            color="k",
            marker="o",
            transform=transform,
        )
        ax = plot_radar(
            ax,
            data,
            hdr.lat,
            hdr.lon,
            time,
        )

    ax.plot(haarpLon, haarpLat, marker='o', color='red', transform=transform)

    # Plot the radar labels
    geodetic_transform = ccrs.Geodetic()._as_mpl_transform(ax)
    text_transform = offset_copy(geodetic_transform, units='dots', x=-25)
    for rn, radar in radars.items():
        rn = rn.split('.')[0].upper()
        plt.text(radar['lon'],
                 radar['lat'],
                 rn,
                 verticalalignment='center',
                 horizontalalignment='right',
                 transform=text_transform,
                 bbox=dict(facecolor='sandybrown', boxstyle='round'))

    ax.xaxis.zoom(3)
    ax.yaxis.zoom(3)
    plt.suptitle(time.strftime('%Y %b %d %H:%M'))
    if outFname:
        plt.savefig(outFname)
        print('Saved to %s' % outFname)
    else:
        plt.show()
    plt.close()
コード例 #25
0
                                           fixed_plate)
    lat, lon, angle = rotation.get_lat_lon_euler_pole_and_angle_degrees()
    euler_pole = mcplates.EulerPole(lon, lat,
                                    1.)  # Don't care about the rate here
    pole.rotate(euler_pole, -angle)
    lats[i] = pole.latitude
    lons[i] = pole.longitude

average_rotation = rotation_model.get_rotation(times[-1], australia, 0.0,
                                               fixed_plate)
print average_rotation.get_lat_lon_euler_pole_and_angle_degrees()

mlats = [muller_apw(t)[1] for t in times]
mlons = [muller_apw(t)[0] for t in times]

ax = plt.axes(projection=ccrs.Orthographic(120., -30.))
ax.plot(lons, lats, transform=ccrs.PlateCarree(), lw=2)
ax.plot(mlons, mlats, transform=ccrs.PlateCarree(), lw=2)
ax.set_global()
ax.gridlines()
lon_shift = 0.
mcplates.plot.plot_continent(ax,
                             'australia',
                             rotation_pole=mcplates.Pole(0., 90., 1.0),
                             angle=-lon_shift,
                             color='k')
mcplates.plot.plot_continent(ax,
                             'antarctica',
                             rotation_pole=mcplates.Pole(0., 90., 1.0),
                             angle=-lon_shift,
                             color='k')
コード例 #26
0
ファイル: ray_plots.py プロジェクト: rareid2/SR_interface
def plotray2D(ray_datenum,
              raylist,
              ray_out_dir,
              crs,
              carsph,
              units,
              md,
              t_save=None,
              show_plot=True,
              plot_density=False,
              damping_vals=None):

    # !!!!!!! ONLY suports cartesian plotting!

    # first, find the max index of refraction if plot_density is selected for weighting purposes
    if plot_density:
        r = raylist[0]  # just grab the first ray
        w = r['w']

        # call stix parameters to find resonance cone
        R, L, P, S, D = stix_parameters(r, 0, w)
        resangle = np.arctan(np.sqrt(-P / S))

        root = -1  # whistler solution

        # Solve the cold plasma dispersion relation
        # subtract 3 to avoid infinity index of refr. and match the initialization at bfield script
        cos2phi = pow(np.cos(resangle - (3 * D2R)), 2)
        sin2phi = pow(np.sin(resangle - (3 * D2R)), 2)

        A = S * sin2phi + P * cos2phi
        B = R * L * sin2phi + P * S * (1.0 + cos2phi)

        discriminant = B * B - 4.0 * A * R * L * P
        n1sq = (B + np.sqrt(discriminant)) / (2.0 * A)
        n2sq = (B - np.sqrt(discriminant)) / (2.0 * A)

        # negative refers to the fact that ^^^ B - sqrt
        #n1 = np.sqrt(n1sq)

        if n2sq < 0:
            n2 = np.sqrt(n2sq * -1)
        else:
            n2 = np.sqrt(n2sq)
        nmax = n2
        # initialize for next step
        weights = []

    # convert to desired coordinate system into vector list rays
    ray_coords = []

    ray_count = 0
    for r in raylist:
        ray_count += 1

        w = r['w']

        # comes in as SM car in m
        tmp_coords = list(zip(r['pos'].x, r['pos'].y, r['pos'].z))

        nmag = np.sqrt(r['n'].x.iloc[0]**2 + r['n'].y.iloc[0]**2 +
                       r['n'].z.iloc[0]**2)

        tvec_datetime = [
            ray_datenum + dt.timedelta(seconds=s) for s in r['time']
        ]
        new_coords = convert2(tmp_coords, tvec_datetime, 'SM', 'car',
                              ['m', 'm', 'm'], crs, carsph, units)

        # save it
        ray_coords.append(new_coords)

        if plot_density:  # save weighting factor, constant along path
            the_weight = nmag / nmax
            if damping_vals:
                ray_damp = np.ones(len(new_coords))
                time_array = damping_vals[0]
                all_damp = damping_vals[1]
                for rt, tt in enumerate(r['time']):
                    for ti, ta in enumerate(time_array):
                        if np.abs(tt - ta
                                  ) < 1e-2:  # find which time point is closest
                            ray_damp[rt] = all_damp[ti]
                weights.append(ray_damp * the_weight)
            else:
                weights.append(np.ones(len(new_coords)) * the_weight)

    # -------------------------------- PLOTTING --------------------------------
    ray1 = ray_coords[0][0]
    ray1_sph = convert2([ray1], tvec_datetime, crs, carsph, units, 'GEO',
                        'sph', ['m', 'deg', 'deg'])

    # find ray starting long
    long = ray1_sph[0][2]
    # convert for cartopy issues
    if long > 180:
        plane_long = 180 - (long - 180)
        catch = -1
    else:
        plane_long = long
        catch = 1
    try:
        import cartopy
        import cartopy.crs as ccrs
        # make this into a an image (sneaky)

        ax = plt.axes(projection=ccrs.Orthographic(
            central_longitude=(catch * plane_long) - 90, central_latitude=0.0))
        ax.add_feature(cartopy.feature.OCEAN, zorder=0)
        ax.add_feature(cartopy.feature.LAND, zorder=0, edgecolor='black')
        ax.coastlines()
        plt.savefig(ray_out_dir + '/ccrs_proj.png')
        plt.cla()

        import matplotlib.patches as patches
        import matplotlib.cbook as cbook

        img = plt.imread(ray_out_dir + '/ccrs_proj.png', format='png')
        fig, ax = plt.subplots(figsize=(6, 6))
        im = ax.imshow(img, extent=[-1.62, 1.62, -1.3, 1.3],
                       zorder=2)  # not the most scientific
        patch = patches.Circle((0, 0), radius=1.02, transform=ax.transData)
        im.set_clip_path(patch)

    except:
        fig, ax = plt.subplots(figsize=(6, 6))
        earth = plt.Circle((0, 0), 1, color='b', alpha=0.5, zorder=100)
        iono = plt.Circle((0, 0), (R_E + H_IONO) / R_E,
                          color='g',
                          alpha=0.5,
                          zorder=99)
        ax.add_artist(earth)
        ax.add_artist(iono)

    # plot the rays
    rotated_rcoords = []
    for rayc in ray_coords:
        for rc in rayc:
            rotated = rotateplane([rc], tvec_datetime, crs, carsph, units)
            rotated_rcoords.append(rotated[0])

    # repack in xz plane
    rotated_rcoords_x = [rcs[0] for rcs in rotated_rcoords]
    rotated_rcoords_z = [rcs[2] for rcs in rotated_rcoords]

    if plot_density:
        # clean up weights list
        weights = [item for sublist in weights for item in sublist]
        binnum = 40
        binlon = np.linspace(0, 4, num=binnum)
        binlat = np.linspace(-2, 2, num=binnum)
        cmap = plt.cm.get_cmap('Blues')

        # create the density plot
        # log norm scale
        nrays = 10000
        h = ax.hist2d(rotated_rcoords_x,
                      rotated_rcoords_z,
                      bins=[np.array(binlon),
                            np.array(binlat)],
                      weights=weights,
                      norm=mpl.colors.LogNorm(),
                      cmap=cmap)
        ticks = [1, 10, 100, 1000, 1e4]
        tlabels = [10 * np.log10(i / nrays) for i in ticks]
        cbar = fig.colorbar(h[3], ax=ax, shrink=0.84, pad=0.02, ticks=ticks)
        cbar.set_label(label='dBW', weight='bold')
        cbar.ax.set_yticklabels([str(int(tt)) for tt in tlabels
                                 ])  # vertically oriented colorbar

    else:
        # or just plot the ray paths
        ax.scatter(rotated_rcoords_x[0], rotated_rcoords_z[0], c='Blue', s=10)
        ax.scatter(rotated_rcoords_x,
                   rotated_rcoords_z,
                   c='Black',
                   s=1,
                   zorder=103)
        if t_save:
            ax.scatter(rotated_rcoords_x[t_save],
                       rotated_rcoords_z[t_save],
                       c='r',
                       s=20,
                       zorder=104)

        # set as dummy variable for return
        nmax = 1

    # final clean up
    # plot field lines (from IGRF13 model)
    L_shells = [2, 3, 4]  # Field lines to draw
    Lshell_flines = get_Lshells(L_shells, tvec_datetime, crs, carsph, units)

    for lfline in Lshell_flines:
        ax.plot(lfline[0],
                lfline[1],
                color='Black',
                linewidth=1,
                linestyle='dashed')

    plt.xlabel('L (R$_E$)')
    plt.ylabel('L (R$_E$)')
    #plt.xlim([0, max(L_shells)])
    plt.xlim([0, 3])
    plt.ylim([-2, 2])

    if t_save:
        plt.savefig(ray_out_dir + '/' +
                    dt.datetime.strftime(ray_datenum, '%Y_%m_%d_%H%M%S') +
                    '_' + str(round(w / (1e3 * np.pi * 2), 1)) + 'kHz' +
                    '_2Dview' + str(md) + '_' + str(t_save) + '.png')
    else:
        plt.title(
            dt.datetime.strftime(ray_datenum, '%Y-%m-%d %H:%M:%S') + ' ' +
            str(round(w / (1e3 * np.pi * 2), 1)) + 'kHz')
        plt.savefig(ray_out_dir + '/' +
                    dt.datetime.strftime(ray_datenum, '%Y_%m_%d_%H%M%S') +
                    '_' + str(round(w / (1e3 * np.pi * 2), 1)) + 'kHz' +
                    '_2Dview' + str(md) + '.png')

    if show_plot:
        plt.show()
    plt.close()

    return nmax
コード例 #27
0
calculate normal gravity at any latitude and height (it's symmetric in the longitudinal
direction). The ellipsoid in the calculations used can be changed using
:func:`harmonica.set_ellipsoid`.
"""
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import harmonica as hm
import verde as vd

# Create a global computation grid with 1 degree spacing
region = [0, 360, -90, 90]
longitude, latitude = vd.grid_coordinates(region, spacing=1)

# Compute normal gravity for the WGS84 ellipsoid (the default) on its surface
gamma = hm.normal_gravity(latitude=latitude, height=0)

# Make a plot of the normal gravity using Cartopy
plt.figure(figsize=(10, 10))
ax = plt.axes(projection=ccrs.Orthographic())
ax.set_title("Normal gravity of the WGS84 ellipsoid")
ax.coastlines()
pc = ax.pcolormesh(longitude, latitude, gamma, transform=ccrs.PlateCarree())
plt.colorbar(pc,
             label="mGal",
             orientation="horizontal",
             aspect=50,
             pad=0.01,
             shrink=0.5)
plt.tight_layout()
plt.show()
コード例 #28
0
if __name__ == '__main__':
    """
    Check the RISR and SD overlap
    """
    plot_out = "save"

    rkn_lon, rkn_lat = -92.113, 62.82  # RKN
    inv_lon, inv_lat = -133.77, 68.41  # INV
    risr_lon, risr_lat = -94.91, 74.73  # RISR

    fig = plt.figure(figsize=(8, 5), dpi=300)
    ax = fig.add_subplot(1,
                         1,
                         1,
                         projection=ccrs.Orthographic(rkn_lon, rkn_lat))
    # ax.set_global()
    ax.set_extent([-37, -143, 35, 90])
    ax.add_feature(cfeature.OCEAN)
    ax.add_feature(cfeature.LAND)
    # ax.stock_img()
    # ax.add_feature(cfeature.COASTLINE)
    # ax.add_feature(cfeature.BORDERS, linestyle="-", linewidth=0.5)
    radar_marker_size = 4

    # Add RKN to the map
    plt.plot([rkn_lon, rkn_lon], [rkn_lat, rkn_lat],
             'go',
             markersize=radar_marker_size,
             transform=ccrs.Geodetic(),
             label="RKN")
コード例 #29
0
from matplotlib.animation import FFMpegWriter

logger = logging.getLogger(__name__)

# Parameters
first_frame = 1
#last_frame = 8
figsize = (3, 3)
dpi = 300
show_time = True
gridlines = True
coastlines = False
edgecolor = 'k'
proj = ccrs.PlateCarree(central_longitude=0)  #, central_latitude=30)
proj = ccrs.Mollweide(central_longitude=0)
proj = ccrs.Orthographic(central_longitude=0, central_latitude=30)
#fields = ['p','om','vth','vph']
#fields = ['v_ph', 'om']
fields = ['om', 'v_ph']
sim_number = 1  #set as the suffix of the video file
input_folder = 'output'  #input folder for data
output_folder = 'videos'  #where to write the video?
FPS = 15
step = 3  #data frames to skip per video frame

if not os.path.exists(output_folder):
    os.mkdir(output_folder)

#count files in the input folder
last_frame = len(glob.glob1("".join([input_folder, '/']), "*.npz"))
logger.info('Total number of frames: %i' % (last_frame))
コード例 #30
0
def plot_CONUS(mme_diff, cmap_name=plt.cm.BrBG, vmax=None, vmin=None):
    lono = mme_diff.getLongitude()[:]
    lato = mme_diff.getLatitude()[:]
    lon, lat = np.meshgrid(lono, lato)
    states_provinces = cfeature.NaturalEarthFeature(category='cultural',\
            name='admin_1_states_provinces_lines',\
            scale='50m',\
            facecolor='none')
    extent_lonlat = (-125, -70, 22, 50)

    #clevs = np.array([-0.6,-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,.3,.4,.5,.6])*2.5
    if vmin is None:
        vmin = np.percentile(mme_diff.compressed(), 5)
    if vmax is None:
        vmax = np.percentile(mme_diff.compressed(), 95)
    clevs = np.linspace(vmin, vmax, 13)
    clevs_units = clevs.copy()
    nmap = plt.cm.get_cmap(name=cmap_name, lut=clevs.size - 1)

    ocean_color = np.float64([209, 230, 241]) / 255

    fig = plt.figure(figsize=(12, 12), facecolor="white")
    ax = fig.add_subplot(1,
                         1,
                         1,
                         projection=ccrs.Orthographic(central_longitude=-100,
                                                      central_latitude=25,
                                                      globe=None))
    m = ax.contourf(lon,
                    lat,
                    mme_diff,
                    clevs,
                    transform=ccrs.PlateCarree(),
                    cmap=nmap,
                    extend="both")
    ax.coastlines()
    ax.set_global()
    ax.set_extent(extent_lonlat, crs=ccrs.PlateCarree())
    #ax.gridlines(xlocs=np.arange(-180,190,10),ylocs=np.arange(-180,190,10))
    ax.add_feature(cfeature.BORDERS,
                   linewidth=0.5,
                   linestyle='-',
                   edgecolor='k')
    ax.add_feature(states_provinces,
                   linewidth=0.5,
                   linestyle='-',
                   edgecolor='k')
    #ax.add_feature(newcoast, linewidth=0.5, linestyle='-', edgecolor='k')
    #ax.add_feature(newlake, linewidth=0.5, linestyle='-', edgecolor='k')
    ax.add_feature(cartopy.feature.LAND, color='w', zorder=0, edgecolor='k')
    ax.add_feature(cartopy.feature.OCEAN,
                   color=ocean_color,
                   zorder=0,
                   edgecolor='k')
    ax.add_feature(cfeature.BORDERS,
                   linewidth=0.5,
                   linestyle='-',
                   edgecolor='k')
    ax.add_feature(cartopy.feature.OCEAN, color=ocean_color, zorder=1)
    #ax.add_feature(newcoast, linewidth=1, linestyle='-', zorder=2,edgecolor='k')
    #ax.text(-122,21,var_txt+' ('+seas_txt+')',transform=ccrs.PlateCarree(),fontsize=32,fontweight="bold", \
    #horizontalalignment='center', verticalalignment='center',)
    #ax.text(-122,17,ssp_txt,transform=ccrs.PlateCarree(),fontsize=28,fontweight="normal", \
    #horizontalalignment='center', verticalalignment='center',)
    cbar = plt.colorbar(m,
                        orientation="horizontal",
                        fraction=0.08,
                        pad=0.04,
                        ticks=clevs_units[np.arange(0, clevs_units.size + 1,
                                                    2)])
    cbar.ax.tick_params(labelsize=24)