コード例 #1
0
ファイル: ContinuumSub_AT.py プロジェクト: teuben/admit
    def run(self):
        """ The run method creates the BDP.

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("ContinuumSub")  # tagging time
        self._summary = {}  # an ADMIT summary will be created here

        contsub = self.getkey("contsub")
        pad = self.getkey("pad")
        fitorder = self.getkey("fitorder")

        # x.im -> x.cim + x.lim

        # b1  = input spw BDP
        # b1a = optional input {Segment,Line}List
        # b1b = optional input Cont Map (now deprecated)
        # b2  = output line cube
        # b3  = output cont map
        b1 = self._bdp_in[0]
        f1 = b1.getimagefile(bt.CASA)

        b1a = self._bdp_in[1]
        # b1b = self._bdp_in[2]
        b1b = None  # do not allow continuum maps to be input

        f2 = self.mkext(f1, 'lim')
        f3 = self.mkext(f1, 'cim')
        f3a = self.mkext(f1, 'cim3d')  # temporary cube name, map is needed
        b2 = SpwCube_BDP(f2)
        b3 = Image_BDP(f3)

        self.addoutput(b2)
        self.addoutput(b3)

        taskinit.ia.open(self.dir(f1))
        s = taskinit.ia.summary()
        nchan = s['shape'][
            2]  # ingest has guarenteed this to the spectral axis

        if b1a != None:  # if a LineList was given, use that
            if len(b1a.table) > 0:
                # this section of code actually works for len(ch0)==0 as well
                #
                ch0 = b1a.table.getFullColumnByName("startchan")
                ch1 = b1a.table.getFullColumnByName("endchan")
                if pad != 0:  # can widen or narrow the segments
                    if pad > 0:
                        logging.info("pad=%d to widen the segments" % pad)
                    else:
                        logging.info("pad=%d to narrow the segments" % pad)
                    ch0 = np.where(ch0 - pad < 0, 0, ch0 - pad)
                    ch1 = np.where(ch1 + pad >= nchan, nchan - 1, ch1 + pad)
                s = Segments(ch0, ch1, nchan=nchan)
                ch = s.getchannels(
                    True)  # take the complement of lines as the continuum
            else:
                ch = range(
                    nchan
                )  # no lines?  take everything as continuum (probably bad)
                logging.warning(
                    "All channels taken as continuum. Are you sure?")
        elif len(contsub) > 0:  # else if contsub[] was supplied manually
            s = Segments(contsub, nchan=nchan)
            ch = s.getchannels()
        else:
            raise Exception, "No contsub= or input LineList given"

        if len(ch) > 0:
            taskinit.ia.open(self.dir(f1))
            taskinit.ia.continuumsub(outline=self.dir(f2),
                                     outcont=self.dir(f3a),
                                     channels=ch,
                                     fitorder=fitorder)
            taskinit.ia.close()
            dt.tag("continuumsub")
            casa.immoments(
                self.dir(f3a), -1,
                outfile=self.dir(f3))  # mean of the continuum cube (f3a)
            utils.remove(self.dir(f3a))  # is the continuum map (f3)
            dt.tag("immoments")
            if b1b != None:
                # this option is now deprecated (see above, by setting b1b = None), no user option allowed
                # there is likely a mis-match in the beam, given how they are produced. So it's safer to
                # remove this here, and force the flow to smooth manually
                print "Adding back in a continuum map"
                f1b = b1b.getimagefile(bt.CASA)
                f1c = self.mkext(f1, 'sum')
                # @todo   notice we are not checking for conforming mapsize and WCS
                #         and let CASA fail out if we've been bad.
                casa.immath([self.dir(f3), self.dir(f1b)], 'evalexpr',
                            self.dir(f1c), 'IM0+IM1')
                utils.rename(self.dir(f1c), self.dir(f3))
                dt.tag("immath")
        else:
            raise Exception, "No channels left to determine continuum. pad=%d too large?" % pad

        # regression
        rdata = casautil.getdata(self.dir(f3)).data
        logging.regression("CSUB: %f %f" % (rdata.min(), rdata.max()))

        # Create two output images for html and their thumbnails, too
        implot = ImPlot(ptype=self._plot_type,
                        pmode=self._plot_mode,
                        abspath=self.dir())
        implot.plotter(rasterfile=f3, figname=f3, colorwedge=True)
        figname = implot.getFigure(figno=implot.figno, relative=True)
        thumbname = implot.getThumbnail(figno=implot.figno, relative=True)
        b2.setkey("image", Image(images={bt.CASA: f2}))
        b3.setkey("image", Image(images={bt.CASA: f3, bt.PNG: figname}))
        dt.tag("implot")

        if len(ch) > 0:
            taskargs = "pad=%d fitorder=%d contsub=%s" % (pad, fitorder,
                                                          str(contsub))
            imcaption = "Continuum map"
            self._summary["continuumsub"] = SummaryEntry(
                [figname, thumbname, imcaption], "ContinuumSub_AT",
                self.id(True), taskargs)

        dt.tag("done")
        dt.end()
コード例 #2
0
]

###############
#### input ####
###############
rms_val = 2.3e-2  #rms from casa viewer
sigma = 2.5
infile = 'data/HZ7_Centered.fits'
emissionChannels = '51~75'  #channels from casa viewer

###########################################################
#### Option 1: Using the includpix to make moment maps ####
###########################################################
casa.immoments(axis='spec',
               imagename=infile,
               moments=[0, 1, 2],
               outfile='HZ7_mom_includepix',
               includepix=[sigma * rms_val, 100],
               chans=emissionChannels)

######################################################################################################
#### Option 2: Making a mask from the -1 map and choosing everything above 0.0001 Janskys as real ####
######################################################################################################
#using a mask created by collapsing the line in casaviewer. Here I manually select that everything above 0.1 mJy is real.
casa.immoments(axis='spec',
               imagename=infile,
               moments=[-1],
               outfile='HZ7_avg',
               chans=emissionChannels)  # make the HZ7_avg file
casa.immoments(axis='spec',
               imagename='HZ7_mom_includepix',
               moments=[0, 1, 2],
コード例 #3
0
ファイル: CubeSum_AT.py プロジェクト: teuben/admit
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("CubeSum")              # tagging time
        self._summary = {}                       # an ADMIT summary will be created here
 
        numsigma = self.getkey("numsigma")       # get the input keys
        sigma = self.getkey("sigma")
        use_lines = self.getkey("linesum")
        pad = self.getkey("pad") 

        b1  = self._bdp_in[0]                    # spw image cube
        b1a = self._bdp_in[1]                    # cubestats (optional)
        b1b = self._bdp_in[2]                    # linelist  (optional)

        f1 =  b1.getimagefile(bt.CASA)
        taskinit.ia.open(self.dir(f1))
        s = taskinit.ia.summary()
        nchan = s['shape'][2]

        if b1b != None:
            ch0 = b1b.table.getFullColumnByName("startchan")
            ch1 = b1b.table.getFullColumnByName("endchan")
            s = Segments(ch0,ch1,nchan=nchan)
            # @todo something isn't merging here as i would have expected,
            #       e.g. test0.fits [(16, 32), (16, 30), (16, 29)]
            if pad > 0:
                for (c0,c1) in s.getsegmentsastuples():
                    s.append([c0-pad,c0])
                    s.append([c1,c1+pad])
            s.merge()
            s.recalcmask()
            # print "PJT segments:",s.getsegmentsastuples()
            ns = len(s.getsegmentsastuples())
            chans = s.chans(not use_lines)
            if use_lines:
                msum = s.getmask()
            else:
                msum = 1 - s.getmask()
            logging.info("Read %d segments" % ns)
            # print "chans",chans
            # print "msum",msum

        #  from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping
        #  examples are:  ['boxcar',3]    ['gaussian',7]    ['hanning',5] 
        smooth= []
                
        sig_const = False                        # figure out if sigma is taken as constant in the cube
        if b1a == None:                          # if no 2nd BDP was given, sigma needs to be specified 
            if sigma <= 0.0:
                raise Exception,"Neither user-supplied sigma nor CubeStats_BDP input given. One is required."
            else:
                sig_const = True                 # and is constant
        else:
            if sigma > 0:
                sigma = b1a.get("sigma")
                sig_const = True

        if sig_const:
            logging.info("Using constant sigma = %f" % sigma)
        else:
            logging.info("Using varying sigma per plane")

        infile = b1.getimagefile(bt.CASA)          # ADMIT filename of the image (cube)
        bdp_name = self.mkext(infile,'csm')        # morph to the new output name with replaced extension 'csm'
        image_out = self.dir(bdp_name)             # absolute filename
        
        args = {"imagename" : self.dir(infile)}    # assemble arguments for immoments()
        args["moments"] = 0                        # only need moments=0 (or [0] is ok as well)
        args["outfile"] = image_out                # note full pathname

        dt.tag("start")

        if sig_const:
            args["excludepix"] = [-numsigma*sigma, numsigma*sigma]        # single global sigma
            if b1b != None:
                # print "PJT: ",chans
                args["chans"] = chans
        else:
            # @todo    in this section bad channels can cause a fully masked cubesum = bad
            # cubestats input
            sigma_array = b1a.table.getColumnByName("sigma")              # channel dependent sigma
            sigma_pos = sigma_array[np.where(sigma_array>0)]
            smin = sigma_pos.min()
            smax = sigma_pos.max()
            logging.info("sigma varies from %f to %f" % (smin,smax))
            maxval = b1a.get("maxval")                                    # max in cube
            nzeros = len(np.where(sigma_array<=0.0)[0])                   # check bad channels
            if nzeros > 0:
                logging.warning("There are %d NaN channels " % nzeros)
                # raise Exception,"need to recode CubeSum or use constant sigma" 
            dt.tag("grab_sig")

            if len(smooth) > 0:
                # see also LineID and others
                filter = Filter1D.Filter1D(sigma_array,smooth[0],**Filter1D.Filter1D.convertargs(smooth))
                sigma_array = filter.run()
                dt.tag("smooth_sig")
            # create a CASA image copy for making the mirror sigma cube to mask against
            file = self.dir(infile)
            mask = file+"_mask"
            taskinit.ia.fromimage(infile=file, outfile=mask)
            nx = taskinit.ia.shape()[0]
            ny = taskinit.ia.shape()[1]
            nchan = taskinit.ia.shape()[2]
            taskinit.ia.fromshape(shape=[nx,ny,1])
            plane = taskinit.ia.getchunk([0,0,0],[-1,-1,0])     # convenience plane for masking operation
            dt.tag("mask_sig")

            taskinit.ia.open(mask) 
            dt.tag("open_mask")
              
            count = 0
            for i in range(nchan):
                if sigma_array[i] > 0:
                    if b1b != None:
                        if msum[i]:
                            taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1])
                            count = count + 1
                        else:
                            taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1])                            
                    else:
                        taskinit.ia.putchunk(plane*0+sigma_array[i],blc=[0,0,i,-1])
                        count = count + 1
                else:
                    taskinit.ia.putchunk(plane*0+maxval,blc=[0,0,i,-1])
            taskinit.ia.close()
            logging.info("%d/%d channels used for CubeSum" % (count,nchan))
            dt.tag("close_mask")

            names = [file, mask]
            tmp = file + '.tmp'
            if numsigma == 0.0:
                # hopefully this will also make use of the mask
                exp = "IM0[IM1<%f]" % (0.99*maxval)
            else:
                exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma)
            # print "PJT: exp",exp
            casa.immath(mode='evalexpr', imagename=names, expr=exp, outfile=tmp) 
            args["imagename"] = tmp
            dt.tag("immath")

        casa.immoments(**args) 
        dt.tag("immoments")

        if sig_const is False:  
            # get rid of temporary files
            utils.remove(tmp)
            utils.remove(mask)

        # get the flux
        taskinit.ia.open(image_out)
        st = taskinit.ia.statistics()
        taskinit.ia.close()
        dt.tag("statistics")
        # report that flux, but there's no way to get the units from casa it seems
        # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA
        # imstat() does seem to know it.
        if st.has_key('flux'):
            rdata = [st['flux'][0],st['sum'][0]]
            logging.info("Total flux: %f (sum=%f)" % (st['flux'],st['sum']))
        else:
            rdata = [st['sum'][0]]
            logging.info("Sum: %f (beam parameters missing)" % (st['sum']))
        logging.regression("CSM: %s" % str(rdata))
            
        # Create two output images for html and their thumbnails, too
        implot = ImPlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
        implot.plotter(rasterfile=bdp_name,figname=bdp_name,colorwedge=True)
        figname   = implot.getFigure(figno=implot.figno,relative=True)
        thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
       
        dt.tag("implot")

        thumbtype = bt.PNG            # really should be correlated with self._plot_type!!

        # 2. Create a histogram of the map data
        # get the data for a histogram
        data = casautil.getdata(image_out,zeromask=True).compressed()
        dt.tag("getdata")

        # get the label for the x axis
        bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit")

        # Make the histogram plot
        # Since we give abspath in the constructor, figname should be relative
        myplot = APlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
        auxname = bdp_name + "_histo"
        auxtype = bt.PNG  # really should be correlated with self._plot_type!!
        myplot.histogram(columns = data,
                         figname = auxname,
                         xlab    = bunit,
                         ylab    = "Count",
                         title   = "Histogram of CubeSum: %s" % (bdp_name),
                         thumbnail=True)
        auxname = myplot.getFigure(figno=myplot.figno,relative=True)
        auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

        images = {bt.CASA : bdp_name, bt.PNG : figname}
        casaimage = Image(images    = images,
                                auxiliary = auxname,
                                auxtype   = auxtype,
                                thumbnail = thumbname,
                                thumbnailtype = thumbtype)

        if hasattr(b1,"line"):                      # SpwCube doesn't have Line
            line = deepcopy(getattr(b1,"line"))
            if type(line) != type(Line):
                line = Line(name="Undetermined")
        else:
            line = Line(name="Undetermined")    # fake a Line if there wasn't one

        self.addoutput(Moment_BDP(xmlFile=bdp_name,moment=0,image=deepcopy(casaimage),line=line))
        imcaption = "Integral (moment 0) of all emission in image cube"
        auxcaption = "Histogram of cube sum for image cube"
        taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma, str(smooth))
        self._summary["cubesum"] = SummaryEntry([figname,thumbname,imcaption,auxname,auxthumb,auxcaption,bdp_name,infile],"CubeSum_AT",self.id(True),taskargs)
        
        dt.tag("done")
        dt.end()
コード例 #4
0
ファイル: ContinuumSub_AT.py プロジェクト: teuben/admit
    def run(self):
        """ The run method creates the BDP.

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("ContinuumSub")         # tagging time
        self._summary = {}                       # an ADMIT summary will be created here

        contsub = self.getkey("contsub")
        pad = self.getkey("pad")
        fitorder = self.getkey("fitorder")

        # x.im -> x.cim + x.lim

        # b1  = input spw BDP
        # b1a = optional input {Segment,Line}List
        # b1b = optional input Cont Map (now deprecated)
        # b2  = output line cube
        # b3  = output cont map
        b1 = self._bdp_in[0]
        f1 = b1.getimagefile(bt.CASA)

        b1a = self._bdp_in[1]
        # b1b = self._bdp_in[2]      
        b1b = None                   # do not allow continuum maps to be input

        f2 = self.mkext(f1,'lim')
        f3 = self.mkext(f1,'cim')
        f3a = self.mkext(f1,'cim3d')      # temporary cube name, map is needed
        b2 = SpwCube_BDP(f2)
        b3 = Image_BDP(f3)

        self.addoutput(b2)
        self.addoutput(b3)

        taskinit.ia.open(self.dir(f1))
        s = taskinit.ia.summary()
        nchan = s['shape'][2]                # ingest has guarenteed this to the spectral axis
                        
        if b1a != None:                      # if a LineList was given, use that
            if len(b1a.table) > 0:
                # this section of code actually works for len(ch0)==0 as well
                #
                ch0 = b1a.table.getFullColumnByName("startchan")
                ch1 = b1a.table.getFullColumnByName("endchan")
                if pad != 0:                 # can widen or narrow the segments
                    if pad > 0:
                        logging.info("pad=%d to widen the segments" % pad)
                    else:
                        logging.info("pad=%d to narrow the segments" % pad)
                    ch0 = np.where(ch0-pad <  0,     0,       ch0-pad)
                    ch1 = np.where(ch1+pad >= nchan, nchan-1, ch1+pad)
                s = Segments(ch0,ch1,nchan=nchan)
                ch = s.getchannels(True)     # take the complement of lines as the continuum
            else:
                ch = range(nchan)            # no lines?  take everything as continuum (probably bad)
                logging.warning("All channels taken as continuum. Are you sure?")
        elif len(contsub) > 0:               # else if contsub[] was supplied manually
            s = Segments(contsub,nchan=nchan)
            ch = s.getchannels()
        else:
            raise Exception,"No contsub= or input LineList given"
            
        if len(ch) > 0:
            taskinit.ia.open(self.dir(f1))
            taskinit.ia.continuumsub(outline=self.dir(f2),outcont=self.dir(f3a),channels=ch,fitorder=fitorder)
            taskinit.ia.close()
            dt.tag("continuumsub")
            casa.immoments(self.dir(f3a),-1,outfile=self.dir(f3))      # mean of the continuum cube (f3a)
            utils.remove(self.dir(f3a))                                # is the continuum map (f3)
            dt.tag("immoments")
            if b1b != None:
                # this option is now deprecated (see above, by setting b1b = None), no user option allowed
                # there is likely a mis-match in the beam, given how they are produced. So it's safer to
                # remove this here, and force the flow to smooth manually
                print "Adding back in a continuum map"
                f1b = b1b.getimagefile(bt.CASA)
                f1c = self.mkext(f1,'sum')
                # @todo   notice we are not checking for conforming mapsize and WCS
                #         and let CASA fail out if we've been bad.
                casa.immath([self.dir(f3),self.dir(f1b)],'evalexpr',self.dir(f1c),'IM0+IM1')
                utils.rename(self.dir(f1c),self.dir(f3))
                dt.tag("immath")
        else:
            raise Exception,"No channels left to determine continuum. pad=%d too large?" % pad

        # regression
        rdata = casautil.getdata(self.dir(f3)).data
        logging.regression("CSUB: %f %f" % (rdata.min(),rdata.max()))

        # Create two output images for html and their thumbnails, too
        implot = ImPlot(ptype=self._plot_type,pmode=self._plot_mode,abspath=self.dir())
        implot.plotter(rasterfile=f3,figname=f3,colorwedge=True)
        figname   = implot.getFigure(figno=implot.figno,relative=True)
        thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
        b2.setkey("image", Image(images={bt.CASA:f2}))
        b3.setkey("image", Image(images={bt.CASA:f3, bt.PNG : figname}))
        dt.tag("implot")

        if len(ch) > 0:
          taskargs = "pad=%d fitorder=%d contsub=%s" % (pad,fitorder,str(contsub))
          imcaption = "Continuum map"
          self._summary["continuumsub"] = SummaryEntry([figname,thumbname,imcaption],"ContinuumSub_AT",self.id(True),taskargs)
          
        dt.tag("done")
        dt.end()
コード例 #5
0
ファイル: Moment_AT.py プロジェクト: astroumd/admit
    def run(self):
        """ The run method, calculates the moments and creates the BDP(s)

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        momentsummary = []
        dt = utils.Dtime("Moment")

        # variable to track if we are using a single cutoff for all moment maps
        allsame = False
        moments = self.getkey("moments")
        numsigma = self.getkey("numsigma")
        mom0clip = self.getkey("mom0clip")
        # determine if there is only 1 cutoff or if there is a cutoff for each moment
        if len(moments) != len(numsigma):
            if len(numsigma) != 1:
                raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.")
            allsame = True
        # default moment file extensions, this is information copied from casa.immoments()
        momentFileExtensions = {-1: ".average",
                                 0: ".integrated",
                                 1: ".weighted_coord",
                                 2: ".weighted_dispersion_coord",
                                 3: ".median",
                                 4: "",
                                 5: ".standard_deviation",
                                 6: ".rms",
                                 7: ".abs_mean_dev",
                                 8: ".maximum",
                                 9: ".maximum_coord",
                                10: ".minimum",
                                11: ".minimum_coord",
                                }

        logging.debug("MOMENT: %s %s %s" %  (str(moments), str(numsigma), str(allsame)))

        # get the input casa image from bdp[0]
        # also get the channels the line actually covers (if any)
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        chans = self.getkey("chans")
        # the basename of the moments, we will append _0, _1, etc.
        basename = self.mkext(infile, "mom")
        fluxname = self.mkext(infile, "flux")
        # beamarea = nppb(self.dir(infile))
        beamarea = 1.0  # until we have it from the MOM0 map

        sigma0 = self.getkey("sigma")
        sigma  = sigma0

        ia = taskinit.iatool()

        dt.tag("open")

        # if no CubseStats BDP was given and no sigma was specified, find a 
        # noise level via casa.imstat()
        if self._bdp_in[1] is None and sigma <= 0.0:
            raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff")
        elif self._bdp_in[1] is not None:
            sigma = self._bdp_in[1].get("sigma")

        # immoments is a bit peculiar. If you give one moment, it will use 
        # exactly the outfile you picked for multiple moments, it will pick
        # extensions such as .integrated [0], .weighted_coord [1] etc.
        # we loop over the moments and will use the numeric extension instead. 
        # Might be laborious loop for big input cubes
        #
        # arguments for immoments
        args = {"imagename" : self.dir(infile),
                "moments"   : moments,
                "outfile"   : self.dir(basename)}

        # set the channels if given
        if chans != "":
            args["chans"] = chans
        # error check the mom0clip input
        if mom0clip > 0.0 and not 0 in moments:
            logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.")
            # add moment0 to the list of computed moments, but it has to be first
            moments.insert(0,0)
            if not allsame:
                numsigma.insert(0, 2.0*sigma)

        if allsame:
            # this is only executed now if len(moments) > 1 and len(cutoff)==1
            args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma]
            casa.immoments(**args)
            dt.tag("immoments-all")
        else:
            # this is execute if len(moments)==len(cutoff) , even when len=1
            for i in range(len(moments)):
                args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma]
                args["moments"] = moments[i]
                args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]])
                casa.immoments(**args)
                dt.tag("immoments-%d" % moments[i])

        taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) 
        if sigma0 > 0:
            taskargs = taskargs + " sigma=%.2f" % sigma0
        if mom0clip > 0:
            taskargs = taskargs + " mom0clip=%g" % mom0clip
        if chans == "": 
            taskargs = taskargs + " chans=all"
        else:
            taskargs = taskargs + " chans=%s" % str(chans)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + basename.split('/')[0] + '&nbsp;</span>'

        # generate the mask to be applied to all but moment 0
        if mom0clip > 0.0:
            # get the statistics from mom0 map
            # this is usually a very biased map, so unclear if mom0sigma is all that reliable
            args = {"imagename": self.dir(infile)}
            stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0]))
            mom0sigma = float(stat["sigma"][0])
            # generate a temporary masked file, mask will be copied to other moments
            args = {"imagename" : self.dir(basename + momentFileExtensions[0]),
                    "expr"      : 'IM0[IM0>%f]' % (mom0clip * mom0sigma),
                    "outfile"   : self.dir("mom0.masked")
                    }
            casa.immath(**args)
            # get the default mask name
            ia.open(self.dir("mom0.masked"))
            defmask = ia.maskhandler('default')
            ia.close()
            dt.tag("mom0clip")

        # loop over moments to rename them to _0, _1, _2 etc.
        # apply a mask as well for proper histogram creation
        map = {}
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())

        for mom in moments:
            figname = imagename = "%s_%i" % (basename, mom)
            tempname = basename + momentFileExtensions[mom]
            # rename and remove the old one if there is one
            utils.rename(self.dir(tempname), self.dir(imagename))
            # copy the moment0 mask if requested; this depends on that mom0 was done before
            if mom0clip > 0.0 and mom != 0:
                #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0])
                #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0])
                makemask(mode="copy", inpimage=self.dir("mom0.masked"),
                         output="%s:%s" % (self.dir(imagename), defmask[0]),
                         overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"),
                                                            defmask[0]))
                ia.open(self.dir(imagename))
                ia.maskhandler('set', defmask)
                ia.close()
                dt.tag("makemask")
            if mom == 0:
                beamarea = nppb(self.dir(imagename))
            implot.plotter(rasterfile=imagename,figname=figname,
                           colorwedge=True,zoom=self.getkey("zoom"))
            imagepng  = implot.getFigure(figno=implot.figno,relative=True)
            thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
            images = {bt.CASA : imagename, bt.PNG  : imagepng}
            thumbtype=bt.PNG
            dt.tag("implot")

            # get the data for a histogram (ia access is about 1000-2000 faster than imval())
            map[mom] = casautil.getdata(self.dir(imagename))
            data = map[mom].compressed()
            dt.tag("getdata")

            # make the histogram plot

            # get the label for the x axis
            bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit")
            # object for the caption
            objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object")

            # Make the histogram plot
            # Since we give abspath in the constructor, figname should be relative
            auxname = imagename + '_histo'
            auxtype = bt.PNG
            myplot.histogram(columns = data,
                             figname = auxname,
                             xlab    = bunit,
                             ylab    = "Count",
                             title   = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True)

            casaimage = Image(images    = images,
                                    auxiliary = auxname,
                                    auxtype   = auxtype,
                                    thumbnail = thumbname,
                                    thumbnailtype = thumbtype)
            auxname = myplot.getFigure(figno=myplot.figno,relative=True)
            auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

            if hasattr(self._bdp_in[0], "line"):   # SpwCube doesn't have Line
                line = deepcopy(getattr(self._bdp_in[0], "line"))
                if not isinstance(line, Line):
                    line = Line(name="Unidentified")
            else:
                # fake a Line if there wasn't one
                line = Line(name="Unidentified")
            # add the BDP to the output array
            self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom,
                           image=deepcopy(casaimage), line=line))
            dt.tag("ren+mask_%d" % mom)

            imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname)
            auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname)
            thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption,
                                 auxname, auxthumb, auxcaption, infile]
            momentsummary.append(thismomentsummary)

        if map.has_key(0) and map.has_key(1) and map.has_key(2):
            logging.debug("MAPs present: %s" % (map.keys()))

            # m0 needs a new mask, inherited from the more restricted m1 (and m2)
            m0 = ma.masked_where(map[1].mask,map[0])
            m1 = map[1]
            m2 = map[2]
            m01 = m0*m1
            m02 = m0*m1*m1
            m22 = m0*m2*m2
            sum0 = m0.sum()
            vmean = m01.sum()/sum0
            # lacking the full 3D cube, get two estimates and take the max
            sig1  = math.sqrt(m02.sum()/sum0 - vmean*vmean)
            sig2  = m2.max()
            #vsig = max(sig1,sig2)
            vsig = sig1
            
            # consider clipping in the masked array (mom0clip)
            # @todo   i can't use info from line, so just borrow basename for now for grepping
            #         this also isn't really the flux, the points per beam is still in there
            loc = basename.rfind('/')
            sum1 = ma.masked_less(map[0],0.0).sum()   # mom0clip
            # print out:   LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression
            # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube
            s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0]
            s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9
            s_line = line.frequency
            if loc>0:
                if basename[:loc][0:2] == 'U_':
                    # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band
                    if abs(vmean) > vsig:
                        vwarn = '*'
                    else:
                        vwarn = ''
                    vlsr = vmean + (1.0-s_line/s_rest)*utils.c
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig)
                else:
                    # for identified lines we'll assume the ID was correct and not bother with RESTFREQ
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            else:
                msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL"    ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            logging.regression(msg)
            dt.tag("mom0flux")

            # create a histogram of flux per channel

            # grab the X coordinates for the histogram, we want them in km/s
            # restfreq should also be in summary
            restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
            # print "PJT  %.10f %.10f" % (restfreq,s_rest)
            imval0 = casa.imval(self.dir(infile))
            freqs = imval0['coords'].transpose()[2]/1e9
            x = (1-freqs/restfreq)*utils.c
            # 
            h = casa.imstat(self.dir(infile), axes=[0,1])
            if h.has_key('flux'):
                flux0 = h['flux']
            else:
                flux0 = h['sum']/beamarea
            flux0sum = flux0.sum() * abs(x[1]-x[0])
            # @todo   make a flux1 with fluxes derived from a good mask
            flux1 = flux0 
            # construct histogram
            title = 'Flux Spectrum (%g)' % flux0sum
            xlab = 'VLSR (km/s)'
            ylab = 'Flux (Jy)'
            myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True)
            dt.tag("flux-spectrum")
            
        self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", 
                                                self.id(True), taskargs)
        # get rid of the temporary mask
        if mom0clip > 0.0: 
            utils.rmdir(self.dir("mom0.masked"))

        dt.tag("done")
        dt.end()
コード例 #6
0
ファイル: hianalysis.py プロジェクト: ezbc/planckpy
def blankcube(image,
              dummyMS,
              smooth=True,
              verbose=True,
              region='centerbox[[10h21m45s,18.05.14.9],[15arcmin,15arcmin]]',
              ruthless=False,
              extension='.image',
              beamround='int',
              blankThreshold=2.5,
              moments=[0]):
    '''
    Parameters
    ----------
    image : string
        Base name of image. If target image has extension other than '.image',
        change the extension keyword.

    dummyMS : string
        MS file required for blanking process in CASA

    smooth : bool, optional
        Smooth the image to a circular beam before blanking?
        Default True

    verbose : bool, optional

    region : string, optional
        region parameter featured in CASA

    ruthless : bool, optional
        Delete previous outputs from blankcube

    extension : string, optional
        Extension of the target image. Must include the '.', e.g., '.restored'
        Default '.image'

    beamround : string,float
        P

    blankThreshold : float, optional
        Initial blanking threshold of all pixels scaled by the standard
        deviation times the blankingthreshold
        Default = 2.5 (Walter et al. 2008)

    moments : list, optional
        Moments to calculate from cube. Options are 0,1,2.
        Example: [0,1,2]
        Default: [0]

    Returns
    -------
    out : null

    Examples
    --------

    '''

    from casa import immath, imsmooth, immoments
    from casa import image as ia
    from casa import imager as im
    from casa import quanta as qa
    import os
    import numpy as np

    # Delete files associated with previous runs
    if ruthless:
        os.system('rm -rf ' + image + '.smooth.blk.image')
        os.system('rm -rf ' + image + '.smooth.image')
        os.system('rm -rf ' + image + '.blk.image')
        os.system('rm -rf ' + image + '.mask')

    imageDir = './'

    # Create moment maps
    mom0, mom1, mom2 = False, False, False
    if len(moments) > 0:
        for i, moment in enumerate(moments):
            if moment == 0:
                mom0 = True
            if moment == 1:
                mom1 = True
            if moment == 2:
                mom2 = True
    if mom1 == True or mom2 == True:
        beamScale = 1.01
    elif mom0 == True:
        beamScale = 2.

    # determine beamsize of cube
    ia.open(imageDir + image + extension)
    beamsizes = np.zeros(ia.shape()[2])
    for i in range(ia.shape()[2]):
        beamsizes[i] = ia.restoringbeam(channel=i)['major']['value']
    beamsizeUnit = ia.restoringbeam(channel=i)['major']['unit']
    beamsize = qa.convert(str(beamsizes.max()) + beamsizeUnit,
                          'arcsec')['value']
    if type(beamround) == float:
        beamsize_smooth = beamround * beamsize
    else:
        beamsize_smooth = np.ceil(beamsize)  #beamsize_smooth = 1.01 * beamsize
    ia.close()

    if verbose:
        print 'Max beamsize is ' + str(beamsize) + '"'

    if not os.path.exists(image + '.blk.image'):
        # create cube for blanking
        if smooth:  # smooth to a larger beam if the user desires
            if verbose:
                print 'Convolving to ' + str(beamsize_smooth) + '"'

            imsmooth(imagename=image + extension,
                     outfile=image + '.blk.image',
                     major=str(beamsize_smooth) + 'arcsec',
                     minor=str(beamsize_smooth) + 'arcsec',
                     region=region,
                     pa='0deg',
                     targetres=True)
        else:  # do no smooth
            immath(imagename=image + extension,
                   outfile=image + '.blk.image',
                   mode='evalexpr',
                   region=region,
                   expr='IM0')

    if not os.path.exists(image + '.smooth.image'):
        # convolve cube to 2X beam for blanking
        imsmooth(imagename=image + extension,
                 outfile=image + '.smooth.image',
                 major=str(beamsize * beamScale) + 'arcsec',
                 minor=str(beamsize * beamScale) + 'arcsec',
                 pa='0deg',
                 region=region,
                 targetres=True)

    # determine threshold of cube
    ia.open(image + '.smooth.image')
    threshold = ia.statistics()['sigma'][0] * blankThreshold
    ia.close()

    # blank the cube at threshold*sigma
    ia.open(image + '.smooth.image')
    ia.calcmask(mask=image + '.smooth.image > ' + str(threshold), name='mask1')
    wait = 'waits for calcmask to close'
    ia.close()

    # hand blank the cube
    im.open(dummyMS)
    pause = None
    while pause is None:
        im.drawmask(image=image + '.smooth.image', mask=image + '.mask')
        pause = 0
    im.close

    # mask contains values of 0 and 1, change to a mask with only values of 1
    ia.open(image + '.mask')
    ia.calcmask(image + '.mask' + '>0.5')
    ia.close()

    # apply mask on smoothed image
    immath(imagename=image + '.smooth.image',
           outfile=image + '.smooth.blk.image',
           mode='evalexpr',
           mask='mask(' + image + '.mask)',
           expr='IM0')

    # apply mask on image
    ia.open(imageDir + image + '.blk.image')
    ia.maskhandler('copy', [image + '.smooth.blk.image:mask0', 'newmask'])
    ia.maskhandler('set', 'newmask')
    ia.done()

    cube = '.blk.image'  # specify name of cube for moment calculation

    # create moment 0 map
    if mom0:
        if ruthless:
            os.system('rm -rf ' + image + '.mom0.image')
        immoments(imagename=image + cube,
                  moments=[0],
                  axis='spectra',
                  chans='',
                  mask='mask(' + image + cube + ')',
                  outfile=image + '.mom0.image')

    # create moment 1 map
    if mom1:
        if ruthless:
            os.system('rm -rf ' + image + '.mom1.image')
        immoments(imagename=image + cube,
                  moments=[1],
                  axis='spectra',
                  chans='',
                  mask='mask(' + image + cube + ')',
                  outfile=image + '.mom1.image')

    # create moment 2 map
    if mom2:
        if ruthless:
            os.system('rm -rf ' + image + '.mom2.image')
        immoments(imagename=image + cube,
                  moments=[2],
                  axis='spectra',
                  chans='',
                  mask='mask(' + image + cube + ')',
                  outfile=image + '.mom2.image')

    if verbose and mom0:
        from casa import imstat
        flux = imstat(image + '.mom0.image')['flux'][0]
        ia.open(image + '.mom0.image')
        beammaj = ia.restoringbeam(channel=0)['major']['value']
        beammin = ia.restoringbeam(channel=0)['minor']['value']
        beamsizeUnit = ia.restoringbeam(channel=0)['major']['unit']
        ia.close()
        print 'Moment Image: ' + str(image) + '.mom0.image'
        print 'Beamsize: ' + str(beammaj) + '" X ' + str(beammin) + '"'
        print 'Flux: ' + str(flux) + ' Jy km/s'
コード例 #7
0
ファイル: hianalysis.py プロジェクト: ezbc/planckpy
def blankcube(image,
              dummyMS,
              smooth=True,
              verbose=True,
              region='centerbox[[10h21m45s,18.05.14.9],[15arcmin,15arcmin]]',
              ruthless=False,
              extension='.image',
              beamround='int',
              blankThreshold=2.5,
              moments=[0]):

    '''
    Parameters
    ----------
    image : string
        Base name of image. If target image has extension other than '.image',
        change the extension keyword.

    dummyMS : string
        MS file required for blanking process in CASA

    smooth : bool, optional
        Smooth the image to a circular beam before blanking?
        Default True

    verbose : bool, optional

    region : string, optional
        region parameter featured in CASA

    ruthless : bool, optional
        Delete previous outputs from blankcube

    extension : string, optional
        Extension of the target image. Must include the '.', e.g., '.restored'
        Default '.image'

    beamround : string,float
        P

    blankThreshold : float, optional
        Initial blanking threshold of all pixels scaled by the standard
        deviation times the blankingthreshold
        Default = 2.5 (Walter et al. 2008)

    moments : list, optional
        Moments to calculate from cube. Options are 0,1,2.
        Example: [0,1,2]
        Default: [0]

    Returns
    -------
    out : null

    Examples
    --------

    '''

    from casa import immath,imsmooth,immoments
    from casa import image as ia
    from casa import imager as im
    from casa import quanta as qa
    import os
    import numpy as np

    # Delete files associated with previous runs
    if ruthless:
        os.system('rm -rf ' + image + '.smooth.blk.image')
        os.system('rm -rf ' + image + '.smooth.image')
        os.system('rm -rf ' + image + '.blk.image')
        os.system('rm -rf ' + image + '.mask')

    imageDir = './'

    # Create moment maps
    mom0,mom1,mom2 = False,False,False
    if len(moments) > 0:
        for i, moment in enumerate(moments):
            if moment == 0:
                mom0 = True
            if moment == 1:
                mom1 = True
            if moment == 2:
                mom2 = True
    if mom1 == True or mom2 == True:
        beamScale = 1.01
    elif mom0 == True:
        beamScale = 2.

    # determine beamsize of cube
    ia.open(imageDir + image + extension)
    beamsizes = np.zeros(ia.shape()[2])
    for i in range(ia.shape()[2]):
        beamsizes[i] = ia.restoringbeam(channel=i)['major']['value']
    beamsizeUnit = ia.restoringbeam(channel=i)['major']['unit']
    beamsize = qa.convert(str(beamsizes.max()) + beamsizeUnit,'arcsec')['value']
    if type(beamround) == float:
        beamsize_smooth = beamround*beamsize
    else:
        beamsize_smooth = np.ceil(beamsize)   #beamsize_smooth = 1.01 * beamsize
    ia.close()

    if verbose:
        print 'Max beamsize is ' + str(beamsize) + '"'

    if not os.path.exists(image + '.blk.image'):
        # create cube for blanking
        if smooth: # smooth to a larger beam if the user desires
            if verbose:
                print 'Convolving to ' + str(beamsize_smooth) + '"'

            imsmooth(imagename=image + extension,
                     outfile=image + '.blk.image',
                     major=str(beamsize_smooth) + 'arcsec',
                     minor=str(beamsize_smooth) + 'arcsec',
                     region=region,
                     pa='0deg',
                     targetres=True)
        else: # do no smooth
            immath(imagename=image + extension,
               outfile=image + '.blk.image',
                mode='evalexpr',
                region=region,
                expr='IM0')

    if not os.path.exists(image + '.smooth.image'):
        # convolve cube to 2X beam for blanking
        imsmooth(imagename=image + extension,
             outfile=image + '.smooth.image',
             major=str(beamsize*beamScale) + 'arcsec',
             minor=str(beamsize*beamScale) + 'arcsec',
             pa='0deg',
             region=region,
             targetres=True)

    # determine threshold of cube
    ia.open(image + '.smooth.image')
    threshold = ia.statistics()['sigma'][0] * blankThreshold
    ia.close()

    # blank the cube at threshold*sigma
    ia.open(image + '.smooth.image')
    ia.calcmask(mask=image + '.smooth.image > ' + str(threshold),
             name='mask1')
    wait = 'waits for calcmask to close'
    ia.close()

    # hand blank the cube
    im.open(dummyMS)
    pause = None
    while pause is None:
        im.drawmask(image=image + '.smooth.image',
                           mask=image + '.mask')
        pause = 0
    im.close

    # mask contains values of 0 and 1, change to a mask with only values of 1
    ia.open(image + '.mask')
    ia.calcmask(image + '.mask' + '>0.5')
    ia.close()

    # apply mask on smoothed image
    immath(imagename=image + '.smooth.image',
       outfile=image + '.smooth.blk.image',
       mode='evalexpr',
       mask='mask(' + image + '.mask)',
       expr='IM0')

    # apply mask on image
    ia.open(imageDir + image + '.blk.image')
    ia.maskhandler('copy',[image + '.smooth.blk.image:mask0', 'newmask'])
    ia.maskhandler('set','newmask')
    ia.done()

    cube = '.blk.image' # specify name of cube for moment calculation


    # create moment 0 map
    if mom0:
        if ruthless:
            os.system('rm -rf ' + image + '.mom0.image')
        immoments(imagename=image + cube,
                  moments=[0],
                  axis='spectra',
                  chans='',
                  mask='mask(' + image + cube + ')',
                  outfile=image + '.mom0.image')

    # create moment 1 map
    if mom1:
        if ruthless:
            os.system('rm -rf ' + image + '.mom1.image')
        immoments(imagename=image + cube,
                  moments=[1],
                  axis='spectra',
                  chans='',
                  mask='mask(' + image + cube + ')',
                  outfile=image + '.mom1.image')

    # create moment 2 map
    if mom2:
        if ruthless:
            os.system('rm -rf ' + image + '.mom2.image')
        immoments(imagename=image + cube,
                  moments=[2],
                  axis='spectra',
                  chans='',
                  mask='mask(' + image + cube + ')',
                  outfile=image + '.mom2.image')

    if verbose and mom0:
	from casa import imstat
        flux = imstat(image + '.mom0.image')['flux'][0]
        ia.open(image + '.mom0.image')
        beammaj = ia.restoringbeam(channel=0)['major']['value']
        beammin = ia.restoringbeam(channel=0)['minor']['value']
        beamsizeUnit = ia.restoringbeam(channel=0)['major']['unit']
        ia.close()
        print 'Moment Image: ' + str(image) + '.mom0.image'
        print 'Beamsize: ' + str(beammaj) + '" X ' + str(beammin) + '"'
        print 'Flux: ' + str(flux) + ' Jy km/s'
コード例 #8
0
ファイル: CubeSum_AT.py プロジェクト: teuben/admit
    def run(self):
        """ The run method creates the BDP

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        dt = utils.Dtime("CubeSum")  # tagging time
        self._summary = {}  # an ADMIT summary will be created here

        numsigma = self.getkey("numsigma")  # get the input keys
        sigma = self.getkey("sigma")
        use_lines = self.getkey("linesum")
        pad = self.getkey("pad")

        b1 = self._bdp_in[0]  # spw image cube
        b1a = self._bdp_in[1]  # cubestats (optional)
        b1b = self._bdp_in[2]  # linelist  (optional)

        f1 = b1.getimagefile(bt.CASA)
        taskinit.ia.open(self.dir(f1))
        s = taskinit.ia.summary()
        nchan = s['shape'][2]

        if b1b != None:
            ch0 = b1b.table.getFullColumnByName("startchan")
            ch1 = b1b.table.getFullColumnByName("endchan")
            s = Segments(ch0, ch1, nchan=nchan)
            # @todo something isn't merging here as i would have expected,
            #       e.g. test0.fits [(16, 32), (16, 30), (16, 29)]
            if pad > 0:
                for (c0, c1) in s.getsegmentsastuples():
                    s.append([c0 - pad, c0])
                    s.append([c1, c1 + pad])
            s.merge()
            s.recalcmask()
            # print "PJT segments:",s.getsegmentsastuples()
            ns = len(s.getsegmentsastuples())
            chans = s.chans(not use_lines)
            if use_lines:
                msum = s.getmask()
            else:
                msum = 1 - s.getmask()
            logging.info("Read %d segments" % ns)
            # print "chans",chans
            # print "msum",msum

        #  from a deprecated keyword, but kept here to pre-smooth the spectrum before clipping
        #  examples are:  ['boxcar',3]    ['gaussian',7]    ['hanning',5]
        smooth = []

        sig_const = False  # figure out if sigma is taken as constant in the cube
        if b1a == None:  # if no 2nd BDP was given, sigma needs to be specified
            if sigma <= 0.0:
                raise Exception, "Neither user-supplied sigma nor CubeStats_BDP input given. One is required."
            else:
                sig_const = True  # and is constant
        else:
            if sigma > 0:
                sigma = b1a.get("sigma")
                sig_const = True

        if sig_const:
            logging.info("Using constant sigma = %f" % sigma)
        else:
            logging.info("Using varying sigma per plane")

        infile = b1.getimagefile(bt.CASA)  # ADMIT filename of the image (cube)
        bdp_name = self.mkext(
            infile, 'csm'
        )  # morph to the new output name with replaced extension 'csm'
        image_out = self.dir(bdp_name)  # absolute filename

        args = {
            "imagename": self.dir(infile)
        }  # assemble arguments for immoments()
        args["moments"] = 0  # only need moments=0 (or [0] is ok as well)
        args["outfile"] = image_out  # note full pathname

        dt.tag("start")

        if sig_const:
            args["excludepix"] = [-numsigma * sigma,
                                  numsigma * sigma]  # single global sigma
            if b1b != None:
                # print "PJT: ",chans
                args["chans"] = chans
        else:
            # @todo    in this section bad channels can cause a fully masked cubesum = bad
            # cubestats input
            sigma_array = b1a.table.getColumnByName(
                "sigma")  # channel dependent sigma
            sigma_pos = sigma_array[np.where(sigma_array > 0)]
            smin = sigma_pos.min()
            smax = sigma_pos.max()
            logging.info("sigma varies from %f to %f" % (smin, smax))
            maxval = b1a.get("maxval")  # max in cube
            nzeros = len(np.where(sigma_array <= 0.0)[0])  # check bad channels
            if nzeros > 0:
                logging.warning("There are %d NaN channels " % nzeros)
                # raise Exception,"need to recode CubeSum or use constant sigma"
            dt.tag("grab_sig")

            if len(smooth) > 0:
                # see also LineID and others
                filter = Filter1D.Filter1D(
                    sigma_array, smooth[0],
                    **Filter1D.Filter1D.convertargs(smooth))
                sigma_array = filter.run()
                dt.tag("smooth_sig")
            # create a CASA image copy for making the mirror sigma cube to mask against
            file = self.dir(infile)
            mask = file + "_mask"
            taskinit.ia.fromimage(infile=file, outfile=mask)
            nx = taskinit.ia.shape()[0]
            ny = taskinit.ia.shape()[1]
            nchan = taskinit.ia.shape()[2]
            taskinit.ia.fromshape(shape=[nx, ny, 1])
            plane = taskinit.ia.getchunk(
                [0, 0, 0],
                [-1, -1, 0])  # convenience plane for masking operation
            dt.tag("mask_sig")

            taskinit.ia.open(mask)
            dt.tag("open_mask")

            count = 0
            for i in range(nchan):
                if sigma_array[i] > 0:
                    if b1b != None:
                        if msum[i]:
                            taskinit.ia.putchunk(plane * 0 + sigma_array[i],
                                                 blc=[0, 0, i, -1])
                            count = count + 1
                        else:
                            taskinit.ia.putchunk(plane * 0 + maxval,
                                                 blc=[0, 0, i, -1])
                    else:
                        taskinit.ia.putchunk(plane * 0 + sigma_array[i],
                                             blc=[0, 0, i, -1])
                        count = count + 1
                else:
                    taskinit.ia.putchunk(plane * 0 + maxval, blc=[0, 0, i, -1])
            taskinit.ia.close()
            logging.info("%d/%d channels used for CubeSum" % (count, nchan))
            dt.tag("close_mask")

            names = [file, mask]
            tmp = file + '.tmp'
            if numsigma == 0.0:
                # hopefully this will also make use of the mask
                exp = "IM0[IM1<%f]" % (0.99 * maxval)
            else:
                exp = "IM0[abs(IM0/IM1)>%f]" % (numsigma)
            # print "PJT: exp",exp
            casa.immath(mode='evalexpr',
                        imagename=names,
                        expr=exp,
                        outfile=tmp)
            args["imagename"] = tmp
            dt.tag("immath")

        casa.immoments(**args)
        dt.tag("immoments")

        if sig_const is False:
            # get rid of temporary files
            utils.remove(tmp)
            utils.remove(mask)

        # get the flux
        taskinit.ia.open(image_out)
        st = taskinit.ia.statistics()
        taskinit.ia.close()
        dt.tag("statistics")
        # report that flux, but there's no way to get the units from casa it seems
        # ia.summary()['unit'] is usually 'Jy/beam.km/s' for ALMA
        # imstat() does seem to know it.
        if st.has_key('flux'):
            rdata = [st['flux'][0], st['sum'][0]]
            logging.info("Total flux: %f (sum=%f)" % (st['flux'], st['sum']))
        else:
            rdata = [st['sum'][0]]
            logging.info("Sum: %f (beam parameters missing)" % (st['sum']))
        logging.regression("CSM: %s" % str(rdata))

        # Create two output images for html and their thumbnails, too
        implot = ImPlot(ptype=self._plot_type,
                        pmode=self._plot_mode,
                        abspath=self.dir())
        implot.plotter(rasterfile=bdp_name, figname=bdp_name, colorwedge=True)
        figname = implot.getFigure(figno=implot.figno, relative=True)
        thumbname = implot.getThumbnail(figno=implot.figno, relative=True)

        dt.tag("implot")

        thumbtype = bt.PNG  # really should be correlated with self._plot_type!!

        # 2. Create a histogram of the map data
        # get the data for a histogram
        data = casautil.getdata(image_out, zeromask=True).compressed()
        dt.tag("getdata")

        # get the label for the x axis
        bunit = casa.imhead(imagename=image_out, mode="get", hdkey="bunit")

        # Make the histogram plot
        # Since we give abspath in the constructor, figname should be relative
        myplot = APlot(ptype=self._plot_type,
                       pmode=self._plot_mode,
                       abspath=self.dir())
        auxname = bdp_name + "_histo"
        auxtype = bt.PNG  # really should be correlated with self._plot_type!!
        myplot.histogram(columns=data,
                         figname=auxname,
                         xlab=bunit,
                         ylab="Count",
                         title="Histogram of CubeSum: %s" % (bdp_name),
                         thumbnail=True)
        auxname = myplot.getFigure(figno=myplot.figno, relative=True)
        auxthumb = myplot.getThumbnail(figno=myplot.figno, relative=True)

        images = {bt.CASA: bdp_name, bt.PNG: figname}
        casaimage = Image(images=images,
                          auxiliary=auxname,
                          auxtype=auxtype,
                          thumbnail=thumbname,
                          thumbnailtype=thumbtype)

        if hasattr(b1, "line"):  # SpwCube doesn't have Line
            line = deepcopy(getattr(b1, "line"))
            if type(line) != type(Line):
                line = Line(name="Undetermined")
        else:
            line = Line(name="Undetermined")  # fake a Line if there wasn't one

        self.addoutput(
            Moment_BDP(xmlFile=bdp_name,
                       moment=0,
                       image=deepcopy(casaimage),
                       line=line))
        imcaption = "Integral (moment 0) of all emission in image cube"
        auxcaption = "Histogram of cube sum for image cube"
        taskargs = "numsigma=%.1f sigma=%g smooth=%s" % (numsigma, sigma,
                                                         str(smooth))
        self._summary["cubesum"] = SummaryEntry([
            figname, thumbname, imcaption, auxname, auxthumb, auxcaption,
            bdp_name, infile
        ], "CubeSum_AT", self.id(True), taskargs)

        dt.tag("done")
        dt.end()
コード例 #9
0
ファイル: Moment_AT.py プロジェクト: teuben/admit
    def run(self):
        """ The run method, calculates the moments and creates the BDP(s)

            Parameters
            ----------
            None

            Returns
            -------
            None
        """
        self._summary = {}
        momentsummary = []
        dt = utils.Dtime("Moment")

        # variable to track if we are using a single cutoff for all moment maps
        allsame = False
        moments = self.getkey("moments")
        numsigma = self.getkey("numsigma")
        mom0clip = self.getkey("mom0clip")
        # determine if there is only 1 cutoff or if there is a cutoff for each moment
        if len(moments) != len(numsigma):
            if len(numsigma) != 1:
                raise Exception("Length of numsigma and moment lists do not match. They must be the same length or the length of the cutoff list must be 1.")
            allsame = True
        # default moment file extensions, this is information copied from casa.immoments()
        momentFileExtensions = {-1: ".average",
                                 0: ".integrated",
                                 1: ".weighted_coord",
                                 2: ".weighted_dispersion_coord",
                                 3: ".median",
                                 4: "",
                                 5: ".standard_deviation",
                                 6: ".rms",
                                 7: ".abs_mean_dev",
                                 8: ".maximum",
                                 9: ".maximum_coord",
                                10: ".minimum",
                                11: ".minimum_coord",
                                }

        logging.debug("MOMENT: %s %s %s" %  (str(moments), str(numsigma), str(allsame)))

        # get the input casa image from bdp[0]
        # also get the channels the line actually covers (if any)
        bdpin = self._bdp_in[0]
        infile = bdpin.getimagefile(bt.CASA)
        chans = self.getkey("chans")
        # the basename of the moments, we will append _0, _1, etc.
        basename = self.mkext(infile, "mom")
        fluxname = self.mkext(infile, "flux")
        # beamarea = nppb(self.dir(infile))
        beamarea = 1.0  # until we have it from the MOM0 map

        sigma0 = self.getkey("sigma")
        sigma  = sigma0

        dt.tag("open")

        # if no CubseStats BDP was given and no sigma was specified, find a 
        # noise level via casa.imstat()
        if self._bdp_in[1] is None and sigma <= 0.0:
            raise Exception("A sigma or a CubeStats_BDP must be input to calculate the cutoff")
        elif self._bdp_in[1] is not None:
            sigma = self._bdp_in[1].get("sigma")

        # immoments is a bit peculiar. If you give one moment, it will use 
        # exactly the outfile you picked for multiple moments, it will pick
        # extensions such as .integrated [0], .weighted_coord [1] etc.
        # we loop over the moments and will use the numeric extension instead. 
        # Might be laborious loop for big input cubes
        #
        # arguments for immoments
        args = {"imagename" : self.dir(infile),
                "moments"   : moments,
                "outfile"   : self.dir(basename)}

        # set the channels if given
        if chans != "":
            args["chans"] = chans
        # error check the mom0clip input
        if mom0clip > 0.0 and not 0 in moments:
            logging.warning("mom0clip given, but no moment0 map was requested. One will be generated anyway.")
            # add moment0 to the list of computed moments, but it has to be first
            moments.insert(0,0)
            if not allsame:
                numsigma.insert(0, 2.0*sigma)

        if allsame:
            # this is only executed now if len(moments) > 1 and len(cutoff)==1
            args["excludepix"] = [-numsigma[0] * sigma, numsigma[0] * sigma]
            casa.immoments(**args)
            dt.tag("immoments-all")
        else:
            # this is execute if len(moments)==len(cutoff) , even when len=1
            for i in range(len(moments)):
                args["excludepix"] = [-numsigma[i] * sigma, numsigma[i] * sigma]
                args["moments"] = moments[i]
                args["outfile"] = self.dir(basename + momentFileExtensions[moments[i]])
                casa.immoments(**args)
                dt.tag("immoments-%d" % moments[i])

        taskargs = "moments=%s numsigma=%s" % (str(moments), str(numsigma)) 
        if sigma0 > 0:
            taskargs = taskargs + " sigma=%.2f" % sigma0
        if mom0clip > 0:
            taskargs = taskargs + " mom0clip=%g" % mom0clip
        if chans == "": 
            taskargs = taskargs + " chans=all"
        else:
            taskargs = taskargs + " chans=%s" % str(chans)
        taskargs += '&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; <span style="background-color:white">&nbsp;' + basename.split('/')[0] + '&nbsp;</span>'

        # generate the mask to be applied to all but moment 0
        if mom0clip > 0.0:
            # get the statistics from mom0 map
            # this is usually a very biased map, so unclear if mom0sigma is all that reliable
            args = {"imagename": self.dir(infile)}
            stat = casa.imstat(imagename=self.dir(basename + momentFileExtensions[0]))
            mom0sigma = float(stat["sigma"][0])
            # generate a temporary masked file, mask will be copied to other moments
            args = {"imagename" : self.dir(basename + momentFileExtensions[0]),
                    "expr"      : 'IM0[IM0>%f]' % (mom0clip * mom0sigma),
                    "outfile"   : self.dir("mom0.masked")
                    }
            casa.immath(**args)
            # get the default mask name
            taskinit.ia.open(self.dir("mom0.masked"))
            defmask = taskinit.ia.maskhandler('default')
            taskinit.ia.close()
            dt.tag("mom0clip")

        # loop over moments to rename them to _0, _1, _2 etc.
        # apply a mask as well for proper histogram creation
        map = {}
        myplot = APlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())
        implot = ImPlot(pmode=self._plot_mode,ptype=self._plot_type,abspath=self.dir())

        for mom in moments:
            figname = imagename = "%s_%i" % (basename, mom)
            tempname = basename + momentFileExtensions[mom]
            # rename and remove the old one if there is one
            utils.rename(self.dir(tempname), self.dir(imagename))
            # copy the moment0 mask if requested; this depends on that mom0 was done before
            if mom0clip > 0.0 and mom != 0:
                #print "PJT: output=%s:%s" % (self.dir(imagename), defmask[0])
                #print "PJT: inpmask=%s:%s" % (self.dir("mom0.masked"),defmask[0])
                makemask(mode="copy", inpimage=self.dir("mom0.masked"),
                         output="%s:%s" % (self.dir(imagename), defmask[0]),
                         overwrite=True, inpmask="%s:%s" % (self.dir("mom0.masked"),
                                                            defmask[0]))
                taskinit.ia.open(self.dir(imagename))
                taskinit.ia.maskhandler('set', defmask)
                taskinit.ia.close()
                dt.tag("makemask")
            if mom == 0:
                beamarea = nppb(self.dir(imagename))
            implot.plotter(rasterfile=imagename,figname=figname,colorwedge=True)
            imagepng  = implot.getFigure(figno=implot.figno,relative=True)
            thumbname = implot.getThumbnail(figno=implot.figno,relative=True)
            images = {bt.CASA : imagename, bt.PNG  : imagepng}
            thumbtype=bt.PNG
            dt.tag("implot")

            # get the data for a histogram (ia access is about 1000-2000 faster than imval())
            map[mom] = casautil.getdata(self.dir(imagename))
            data = map[mom].compressed()
            dt.tag("getdata")

            # make the histogram plot

            # get the label for the x axis
            bunit = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="bunit")
            # object for the caption
            objectname = casa.imhead(imagename=self.dir(imagename), mode="get", hdkey="object")

            # Make the histogram plot
            # Since we give abspath in the constructor, figname should be relative
            auxname = imagename + '_histo'
            auxtype = bt.PNG
            myplot.histogram(columns = data,
                             figname = auxname,
                             xlab    = bunit,
                             ylab    = "Count",
                             title   = "Histogram of Moment %d: %s" % (mom, imagename), thumbnail=True)

            casaimage = Image(images    = images,
                                    auxiliary = auxname,
                                    auxtype   = auxtype,
                                    thumbnail = thumbname,
                                    thumbnailtype = thumbtype)
            auxname = myplot.getFigure(figno=myplot.figno,relative=True)
            auxthumb = myplot.getThumbnail(figno=myplot.figno,relative=True)

            if hasattr(self._bdp_in[0], "line"):   # SpwCube doesn't have Line
                line = deepcopy(getattr(self._bdp_in[0], "line"))
                if not isinstance(line, Line):
                    line = Line(name="Unidentified")
            else:
                # fake a Line if there wasn't one
                line = Line(name="Unidentified")
            # add the BDP to the output array
            self.addoutput(Moment_BDP(xmlFile=imagename, moment=mom,
                           image=deepcopy(casaimage), line=line))
            dt.tag("ren+mask_%d" % mom)

            imcaption = "%s Moment %d map of Source %s" % (line.name, mom, objectname)
            auxcaption = "Histogram of %s Moment %d of Source %s" % (line.name, mom, objectname)
            thismomentsummary = [line.name, mom, imagepng, thumbname, imcaption,
                                 auxname, auxthumb, auxcaption, infile]
            momentsummary.append(thismomentsummary)

        if map.has_key(0) and map.has_key(1) and map.has_key(2):
            logging.debug("MAPs present: %s" % (map.keys()))

            # m0 needs a new mask, inherited from the more restricted m1 (and m2)
            m0 = ma.masked_where(map[1].mask,map[0])
            m1 = map[1]
            m2 = map[2]
            m01 = m0*m1
            m02 = m0*m1*m1
            m22 = m0*m2*m2
            sum0 = m0.sum()
            vmean = m01.sum()/sum0
            # lacking the full 3D cube, get two estimates and take the max
            sig1  = math.sqrt(m02.sum()/sum0 - vmean*vmean)
            sig2  = m2.max()
            #vsig = max(sig1,sig2)
            vsig = sig1
            
            # consider clipping in the masked array (mom0clip)
            # @todo   i can't use info from line, so just borrow basename for now for grepping
            #         this also isn't really the flux, the points per beam is still in there
            loc = basename.rfind('/')
            sum1 = ma.masked_less(map[0],0.0).sum()   # mom0clip
            # print out:   LINE,FLUX1,FLUX0,BEAMAREA,VMEAN,VSIGMA for regression
            # the linechans parameter in bdpin is not useful to print out here, it's local to the LineCube
            s_vlsr = admit.Project.summaryData.get('vlsr')[0].getValue()[0]
            s_rest = admit.Project.summaryData.get('restfreq')[0].getValue()[0]/1e9
            s_line = line.frequency
            if loc>0:
                if basename[:loc][0:2] == 'U_':
                    # for U_ lines we'll reference the VLSR w.r.t. RESTFREQ in that band
                    if abs(vmean) > vsig:
                        vwarn = '*'
                    else:
                        vwarn = ''
                    vlsr = vmean + (1.0-s_line/s_rest)*utils.c
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vlsr,vsig)
                else:
                    # for identified lines we'll assume the ID was correct and not bother with RESTFREQ
                    msg = "MOM0FLUX: %s %g %g %g %g %g %g" % (basename[:loc],map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            else:
                msg = "MOM0FLUX: %s %g %g %g %g %g %g" % ("SPW_FULL"    ,map[0].sum(),sum0,beamarea,vmean,vmean,vsig)
            logging.regression(msg)
            dt.tag("mom0flux")

            # create a histogram of flux per channel

            # grab the X coordinates for the histogram, we want them in km/s
            # restfreq should also be in summary
            restfreq = casa.imhead(self.dir(infile),mode="get",hdkey="restfreq")['value']/1e9    # in GHz
            # print "PJT  %.10f %.10f" % (restfreq,s_rest)
            imval0 = casa.imval(self.dir(infile))
            freqs = imval0['coords'].transpose()[2]/1e9
            x = (1-freqs/restfreq)*utils.c
            # 
            h = casa.imstat(self.dir(infile), axes=[0,1])
            if h.has_key('flux'):
                flux0 = h['flux']
            else:
                flux0 = h['sum']/beamarea
            flux0sum = flux0.sum() * abs(x[1]-x[0])
            # @todo   make a flux1 with fluxes derived from a good mask
            flux1 = flux0 
            # construct histogram
            title = 'Flux Spectrum (%g)' % flux0sum
            xlab = 'VLSR (km/s)'
            ylab = 'Flux (Jy)'
            myplot.plotter(x,[flux0,flux1],title=title,figname=fluxname,xlab=xlab,ylab=ylab,histo=True)
            dt.tag("flux-spectrum")
            
        self._summary["moments"] = SummaryEntry(momentsummary, "Moment_AT", 
                                                self.id(True), taskargs)
        # get rid of the temporary mask
        if mom0clip > 0.0: 
            utils.rmdir(self.dir("mom0.masked"))

        dt.tag("done")
        dt.end()