コード例 #1
0
def mass_hpa_propeller(diameter,
                       max_power,
                       include_variable_pitch_mechanism=False):
    """
    Returns the estimated mass of a propeller assembly for low-disc-loading applications (human powered airplane, paramotor, etc.)

    :param diameter: diameter of the propeller [m]
    :param max_power: maximum power of the propeller [W]
    :param include_variable_pitch_mechanism: boolean, does this propeller have a variable pitch mechanism?
    :return: estimated weight [kg]
    """
    smoothmax = lambda value1, value2, hardness: cas.log(
        cas.exp(hardness * value1) + cas.exp(hardness * value2)
    ) / hardness  # soft maximum

    mass_propeller = (
        0.495 * (diameter / 1.25)**1.6 *
        smoothmax(0.6, max_power / 14914, hardness=5)**2
    )  # Baselining to a 125cm E-Props Top 80 Propeller for paramotor, with some sketchy scaling assumptions
    # Parameters on diameter exponent and min power were chosen such that Daedalus propeller is roughly on the curve.

    mass_variable_pitch_mech = 216.8 / 800 * mass_propeller
    # correlation to Daedalus data: http://journals.sfu.ca/ts/index.php/ts/article/viewFile/760/718
    if include_variable_pitch_mechanism:
        mass_propeller += mass_variable_pitch_mech

    return mass_propeller
コード例 #2
0
ファイル: mpc_class.py プロジェクト: zhangwjjj/GP-MPC
    def __cost_saturation_l(self, x, x_ref, covar_x, u, covar_u, delta_u, Q, R,
                            S):
        """ Stage Cost function: Expected Value of Saturating Cost
        """
        Nx = ca.MX.size1(Q)
        Nu = ca.MX.size1(R)

        # Create symbols
        Q_s = ca.SX.sym('Q', Nx, Nx)
        R_s = ca.SX.sym('Q', Nu, Nu)
        x_s = ca.SX.sym('x', Nx)
        u_s = ca.SX.sym('x', Nu)
        covar_x_s = ca.SX.sym('covar_z', Nx, Nx)
        covar_u_s = ca.SX.sym('covar_u', ca.MX.size(R))

        Z_x = ca.SX.eye(Nx) + 2 * covar_x_s @ Q_s
        Z_u = ca.SX.eye(Nu) + 2 * covar_u_s @ R_s

        cost_x = ca.Function('cost_x', [x_s, Q_s, covar_x_s], [
            1 - ca.exp(-(x_s.T @ ca.solve(Z_x.T, Q_s.T).T @ x_s)) /
            ca.sqrt(ca.det(Z_x))
        ])
        cost_u = ca.Function('cost_u', [u_s, R_s, covar_u_s], [
            1 - ca.exp(-(u_s.T @ ca.solve(Z_u.T, R_s.T).T @ u_s)) /
            ca.sqrt(ca.det(Z_u))
        ])

        return cost_x(x - x_ref, Q, covar_x) + cost_u(u, R, covar_u)
コード例 #3
0
ファイル: dpc.py プロジェクト: mlab-upenn/DPC-IAX-Iconics
        def RBF(n):

            if n == 1:
                sX = 1
                sY = n
                n_features = self.n_features
                X = cs.SX.sym('X', sX, n_features)
                Y = cs.SX.sym('Y', sY, n_features)
                length_scale = cs.SX.sym('l', 1, n_features)

                X_ = X / cs.repmat(length_scale, sX, 1)
                Y_ = Y / cs.repmat(length_scale, sY, 1)
                dist = cs.SX.zeros((sX, sY))
                for i in xrange(0, sX):
                    for j in xrange(0, sY):
                        dist[i, j] = cs.sum2((X_[i, :] - Y_[j, :])**2)
                K = cs.exp(-.5 * dist)
                self.RBF1 = cs.Function('RBF1', [X, Y, length_scale], [K])

            else:
                sX = 1
                sY = n
                n_features = self.n_features
                X = cs.SX.sym('X', sX, n_features)
                Y = self.model.X_train_
                length_scale = cs.SX.sym('l', 1, n_features)

                X_ = X / cs.repmat(length_scale, sX, 1)
                Y_ = Y / cs.repmat(length_scale, sY, 1)
                dist = cs.SX.zeros((sX, sY))
                for i in xrange(0, sX):
                    for j in xrange(0, sY):
                        dist[i, j] = cs.sum2((X_[i, :] - Y_[j, :])**2)
                K = cs.exp(-.5 * dist)
                self.RBFn = cs.Function('RBFn', [X, length_scale], [K])
def obstacle_cost(U_var, T):
    U_tot = casadi.reshape(U_var, 2, T)
    X_tot = find_X_tot(U_var, T)

    obs = env_setup()
    obs = casadi.DM(obs)
    cost = 0
    for i in range(T):
        x = X_tot[0, i]
        y = X_tot[1, i]
        x0 = obs[0, 0]
        y0 = obs[0, 1]
        r0 = obs[0, 2]
        x1 = obs[1, 0]
        y1 = obs[1, 1]
        r1 = obs[1, 2]
        x2 = obs[2, 0]
        y2 = obs[2, 1]
        r2 = obs[2, 2]
        cost = cost + r0 * 5000 * casadi.exp(-((x - x0)**2 +
                                               (y - y0)**2 - r0**2))
        cost = cost + r1 * 5000 * casadi.exp(-((x - x1)**2 +
                                               (y - y1)**2 - r1**2))
        cost = cost + r2 * 5000 * casadi.exp(-((x - x2)**2 +
                                               (y - y2)**2 - r2**2))

    return cost
コード例 #5
0
    def cost_func_SSP(self, robot, U, X0):

        cost = 0

        U = c.reshape(U, robot.nu, self.T)

        X = c.MX(robot.nx, self.T + 1)
        X[:, 0] = X0

        for i in range(self.T):

            cost = (cost + c.mtimes(c.mtimes(U[:, i].T, self.R), U[:, i]) +
                    c.mtimes(c.mtimes((self.Xg - X[:, i]).T, self.Q),
                             (self.Xg - X[:, i])))

            X_temp = X[0:2, i]

            if params.OBSTACLES:

                obstacle_cost =  params.M*(c.exp(-(c.mtimes(c.mtimes((params.c_obs_1 - X_temp).T, params.E_obs_1),(params.c_obs_1 - X_temp))))+ \
                                        c.exp(-(c.mtimes(c.mtimes((params.c_obs_2 - X_temp).T, params.E_obs_2),(params.c_obs_2 - X_temp)))) + \
                                        c.exp(-(c.mtimes(c.mtimes((params.c_obs_3 - X_temp).T, params.E_obs_3),(params.c_obs_3 - X_temp)))) + \
                                        c.exp(-(c.mtimes(c.mtimes((params.c_obs_4 - X_temp).T, params.E_obs_4),(params.c_obs_4 - X_temp)))))

                cost = cost + obstacle_cost
            X[:, i + 1] = robot.kinematics(X[:, i], U[:, i])

        cost = cost + c.mtimes(c.mtimes((self.Xg - X[:, self.T]).T, self.Qf),
                               (self.Xg - X[:, self.T]))

        return cost
コード例 #6
0
ファイル: aerodynamics.py プロジェクト: cohen39/AeroSandbox
def Cl_rae2822(alpha, Re_c):
    # A curve fit I did to a RAE2822 airfoil, 2D XFoil data. Incompressible flow.
    # Within -2 < alpha < 12 and 10^4 < Re_c < 10^6, has R^2 = 0.9857
    # Likely valid from -6 < alpha < 12 and 10^4 < Re_c < 10^6.
    # See: C:\Projects\GitHub\firefly_aerodynamics\Gists and Ideas\XFoil Drag Fitting\rae2822

    Re_c = cas.fmax(Re_c, 1)
    log10_Re = cas.log10(Re_c)

    # Coeffs
    a1l = 5.5686866813855172e-02
    a1t = 9.7472055628494134e-02
    a4l = -7.2145733312046152e-09
    a4t = -3.6886704372829236e-06
    atr = 8.3723547264375520e-01
    atr2 = -8.3128119739031697e-02
    c0l = -4.9103908291438701e-02
    c0t = 2.3903424824298553e-01
    ctr = 1.3082854754897108e+01
    rtr = 2.6963082864300731e+00

    a = alpha
    r = log10_Re

    Cl = (c0t + a1t * a + a4t * a**4) * 1 / (
        1 + cas.exp(ctr - rtr * r - atr * a - atr2 * a**2)) + (
            c0l + a1l * a + a4l * a**4) * (
                1 - 1 / (1 + cas.exp(ctr - rtr * r - atr * a - atr2 * a**2)))

    return Cl
コード例 #7
0
ファイル: aerodynamics.py プロジェクト: cohen39/AeroSandbox
def Cl_e216(alpha, Re_c):
    # A curve fit I did to a Eppler 216 (e216) airfoil, 2D XFoil data. Incompressible flow.
    # Within -2 < alpha < 12 and 10^4 < Re_c < 10^6, has R^2 = 0.9994
    # Likely valid from -6 < alpha < 12 and 10^4 < Re_c < Inf.
    # See: C:\Projects\GitHub\firefly_aerodynamics\Gists and Ideas\XFoil Drag Fitting\e216

    Re_c = cas.fmax(Re_c, 1)
    log10_Re = cas.log10(Re_c)

    # Coeffs
    a1l = 3.0904412662858878e-02
    a1t = 9.6452654383488254e-02
    a4t = -2.5633334023068302e-05
    asl = 6.4175433185427011e-01
    atr = 3.6775107602844948e-01
    c0l = -2.5909363461176749e-01
    c0t = 8.3824440586718862e-01
    ctr = 1.1431810545735890e+02
    ksl = 5.3416670116733611e-01
    rtr = 3.9713338634462829e+01
    rtr2 = -3.3634858542657771e+00
    xsl = -1.2220899840236835e-01

    a = alpha
    r = log10_Re

    Cl = (c0t + a1t * a + a4t * a**4) * 1 / (
        1 + cas.exp(ctr - rtr * r - atr * a - rtr2 * r**2)) + (
            c0l + a1l * a + asl / (1 + cas.exp(-ksl * (a - xsl)))) * (
                1 - 1 / (1 + cas.exp(ctr - rtr * r - atr * a - rtr2 * r**2)))

    return Cl
コード例 #8
0
ファイル: aerodynamics.py プロジェクト: cohen39/AeroSandbox
def Cd_profile_e216(alpha, Re_c):
    # A curve fit I did to a Eppler 216 (e216) airfoil, 2D XFoil data. Incompressible flow.
    # Within -2 < alpha < 12 and 10^4 < Re_c < 10^6, has R^2 = 0.9995
    # Likely valid from -6 < alpha < 12 and 10^4 < Re_c < 10^6.
    # see: C:\Projects\GitHub\firefly_aerodynamics\Gists and Ideas\XFoil Drag Fitting\e216

    Re_c = cas.fmax(Re_c, 1)
    log10_Re = cas.log10(Re_c)

    # Coeffs
    a1l = 4.7167470806940448e-02
    a1t = 7.5663005080888857e-02
    a2l = 8.7552076545610764e-04
    a4t = 1.1220763679805319e-05
    atr = 4.2456038382581129e-01
    c0l = -1.4099657419753771e+00
    c0t = -2.3855286371940609e+00
    ctr = 9.1474872611212135e+01
    rtr = 3.0218483612170434e+01
    rtr2 = -2.4515094313899279e+00

    a = alpha
    r = log10_Re

    log10_Cd = (c0t + a1t * a + a4t * a**4) * 1 / (
        1 + cas.exp(ctr - rtr * r - atr * a - rtr2 * r**2)) + (
            c0l + a1l * a + a2l * a**2) * (
                1 - 1 / (1 + cas.exp(ctr - rtr * r - atr * a - rtr2 * r**2)))

    Cd = 10**log10_Cd

    return Cd
コード例 #9
0
ファイル: aerodynamics.py プロジェクト: cohen39/AeroSandbox
def Cd_cylinder(Re_D, subcritical_only=False):
    """
    Returns the drag coefficient of a cylinder in crossflow as a function of its Reynolds number.
    :param Re_D: Reynolds number, referenced to diameter
    :param subcritical_only: Determines whether the model models purely subcritical (Re < 300k) cylinder flows. Useful, since
    this model is now convex and can be more well-behaved.
    :return: Drag coefficient
    """
    csigc = 5.5766722118597247
    csigh = 23.7460859935990563
    csub0 = -0.6989492360435040
    csub1 = 1.0465189382830078
    csub2 = 0.7044228755898569
    csub3 = 0.0846501115443938
    csup0 = -0.0823564417206403
    csupc = 6.8020230357616764
    csuph = 9.9999999999999787
    csupscl = -0.4570690347113859

    x = cas.log10(Re_D)

    if subcritical_only:
        Cd = 10**(csub0 * x + csub1) + csub2 + csub3 * x
        return Cd
    else:
        log10_Cd = (
            (cas.log10(10**(csub0 * x + csub1) + csub2 + csub3 * x)) *
            (1 - 1 / (1 + cas.exp(-csigh * (x - csigc)))) +
            (csup0 +
             csupscl / csuph * cas.log(cas.exp(csuph * (csupc - x)) + 1)) *
            (1 / (1 + cas.exp(-csigh * (x - csigc)))))
        Cd = 10**log10_Cd
        return Cd
コード例 #10
0
ファイル: viscous.py プロジェクト: sovsep/AeroSandbox
def Cd_profile_rae2822(alpha, Re_c):
    # A curve fit I did to a RAE2822 airfoil, 2D XFoil data. Incompressible flow.
    # Within -2 < alpha < 12 and 10^4 < Re_c < 10^6, has R^2 = 0.9995
    # Likely valid from -6 < alpha < 12 and 10^4 < Re_c < Inf.
    # see: C:\Projects\GitHub\firefly_aerodynamics\Gists and Ideas\XFoil Drag Fitting\e216

    Re_c = cas.fmax(Re_c, 1)
    log10_Re = cas.log10(Re_c)

    # Coeffs
    at = 8.1034027621509015e+00
    c0l = -8.4296746456429639e-01
    c0t = -1.3700609138855402e+00
    kart = -4.1609994062600880e-01
    kat = 5.9510959342452441e-01
    krt = -7.1938030052506197e-01
    r1l = 1.1548628822014631e-01
    r1t = -4.9133662875044504e-01
    rt = 5.0070459892411696e+00

    a = alpha
    r = log10_Re

    log10_Cd = (c0t + r1t * (r - 4)) * (
            1 / (1 + cas.exp(kat * (a - at) + krt * (r - rt) + kart * (a - at) * (r - rt)))) + (
                       c0l + r1l * (r - 4)) * (
                       1 - 1 / (1 + cas.exp(kat * (a - at) + krt * (r - rt) + kart * (a - at) * (r - rt))))

    Cd = 10 ** log10_Cd

    return Cd
コード例 #11
0
    def plotLogProbVsDistance():
        spchar = " "
        rspace = np.linspace(-0.1, 0.75, num=1000)
        for theta_val in (theta_low, theta_high):
            uspace_type = [
                -log(1 + exp(-beta[0] - beta[1] * theta_val - beta[2] * rval))
                for rval in rspace
            ]
            ax3.plot(rspace,
                     uspace_type,
                     color=color_type_map[theta_val],
                     label=f"Utility{spchar}for Type {theta_val}",
                     zorder=-1)
        low_index = theta.index(theta_low)
        high_index = theta.index(theta_high)
        # yvals_inverted = [0 if v==1 else 1 for v in yvals]
        # gp_inverted = [i for i,v in enumerate(yvals_inverted) if v==1]
        # xlist_inverted = [ gp_inverted[np.argmin([dist[i][j] for j in gp_inverted])] for i in range(nIndiv)]
        # r_inverted = [dist[i][xlist_inverted[i]] for i in range(nIndiv)]
        r_inverted = list(reversed(rvals))
        r_inverted_and_not = {1: rvals, 0: r_inverted}
        utility_inverted_and_not = {
            inversion: sum([
                -log(1 + exp(-beta[0] - beta[1] * theta[ind] -
                             beta[2] * rvals_possibly_inverted[ind]))
                for ind in range(nIndiv)
            ])
            for inversion, rvals_possibly_inverted in
            r_inverted_and_not.items()
        }

        for inversion, rvals_possibly_inverted in r_inverted_and_not.items():
            for ind in reversed(range(nIndiv)):
                ax3.scatter(
                    rvals_possibly_inverted[ind], [
                        -log(1 + exp(-beta[0] - beta[1] * theta[ind] -
                                     beta[2] * rvals_possibly_inverted[ind]))
                    ],
                    marker="+",
                    c=[facility_color_map[inversion]],
                    s=[facility_size_options[inversion]],
                    label=
                    f"Utility from{spchar}{facility_states[inversion].lower()} facility (Sum: {utility_inverted_and_not[inversion]:.02})",
                    zorder=1)
        # for ind in range(len(theta)):
        # 	ax3.scatter(r_inverted[ind],[1/(1+exp(-beta[0] - beta[1]*theta[ind] - beta[2]*r_inverted[ind]))],marker = "+",c=[facility_color_map[0]],s=[facility_size_options[0]],label=f"Utility from {facility_states[0]} facility")
        legend_dict = {
            artist.properties().get('label'): artist
            for artist in ax3.collections.copy() + ax3.lines.copy()
            if "no_legend" not in artist.properties().get('label')
        }
        # ax3.legend(legend_dict.values(),legend_dict.keys(),loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=len(legend_dict),fontsize='small')
        ax3.legend(legend_dict.values(),
                   legend_dict.keys(),
                   loc='best',
                   fontsize='small')
        ax3.set_xlabel("distance from nearest selected facility")
        ax3.set_ylabel("$log[P(Success)]$")
        ax3.set_title("$log[P(success)]$ vs Distance Differs by Type")
コード例 #12
0
    def obstacle_cost_func(self, X_temp):

        cost =  params.M*(c.exp(-(c.mtimes(c.mtimes((params.c_obs_1 - X_temp).T, params.E_obs_1),(params.c_obs_1 - X_temp))))+ \
                                c.exp(-(c.mtimes(c.mtimes((params.c_obs_2 - X_temp).T, params.E_obs_2),(params.c_obs_2 - X_temp)))) + \
                                c.exp(-(c.mtimes(c.mtimes((params.c_obs_3 - X_temp).T, params.E_obs_3),(params.c_obs_3 - X_temp)))) + \
                                c.exp(-(c.mtimes(c.mtimes((params.c_obs_4 - X_temp).T, params.E_obs_4),(params.c_obs_4 - X_temp)))))

        return cost
コード例 #13
0
def trig_prop(m, v, idx, a=1.0):
    """ Exact moment-matching for trig function with Gaussian input

    Compute E(a*sin(x)), E(a*cos(x)), V(a*sin(x)), V(a*cos(x)) and cross-covariances
    for Gaussian inputs x \sim N(m_idx,v_idx) as well as input-output covariances
    using exact moment-matching

    Parameters
    ----------
    m : dx1 ndarray[float | casadi.Sym]
        The mean of the input Gaussian
    v : dxd ndarray[float | casadi.Sym]
    idx: int
        The index to be trigonometrically augmented
    a: float [optional]
        A scalar coefficient

    Returns
    -------
    m_out: 2x1 ndarray[float | casadi.Sym]
        The mean of the trigonometric output
    v_out: 2x2 ndarray[float | casadi.Sym]
        The variance of the trigonometric output
    c_out: inv(v) times input-output-covariance

    """
    m_out = MX(2, 1)
    v_out = MX(2, 2)

    v_exp_0 = exp(-v[idx, idx] / 2)

    m_sin = v_exp_0 * sin(m[idx, 0])
    m_cos = v_exp_0 * cos(m[idx, 0])

    m_out[0] = a * m_sin
    m_out[1] = a * m_cos

    v_exp_1 = exp(-2 * v[idx, idx])
    e_s_sq = (1 - v_exp_1 * cos(2 * m[idx, 0])) / 2
    e_c_sq = (1 + v_exp_1 * cos(2 * m[idx, 0])) / 2

    e_s_times_c = v_exp_1 * sin(2 * m[idx, 0]) / 2

    v_out[0, 0] = e_s_sq - m_sin**2
    v_out[1, 1] = e_c_sq - m_cos**2

    v_out[1, 0] = e_s_times_c - m_sin * m_cos
    v_out[0, 1] = v_out[1, 0]

    v_out = a**2 * v_out

    d = np.shape(m)[0]
    c_out = MX(d, 2)
    c_out[idx, 0] = m_out[1]
    c_out[idx, 1] = -m_out[0]

    return m_out, v_out, c_out
コード例 #14
0
def generate_bird(n=2, func_opts={}, data_type=cs.SX):
    if n != 2:
        raise ValueError("bird is only defined for n=2")
    x = data_type.sym("x", n)
    f = cs.sin(x[0]) * cs.exp((1 - cs.cos(x[1]))**2)
    f += cs.cos(x[1]) * cs.exp((1 - cs.sin(x[0]))**2)
    f += (x[0] - x[1])**2
    func = cs.Function("bird", [x], [f], ["x"], ["f"], func_opts)
    glob_min = [[4.70104, 3.15294], [-1.58214, -3.13024]]
    return func, [[-2 * cs.np.pi, 2 * cs.np.pi]] * n, glob_min
コード例 #15
0
def generate_ackley(n=2,
                    a=20,
                    b=0.2,
                    c=2 * cs.np.pi,
                    func_opts={},
                    data_type=cs.SX):
    x = data_type.sym("x", n)
    sum1 = cs.sumsqrt(x)
    sum2 = cs.sum1(cs.cos(x))
    f = -a * cs.exp(-b * cs.sqrt((1. / n) * sum1)) - cs.exp(
        (1. / n) * sum2) + a + cs.exp(1)
    func = cs.Function("ackley", [x], [f], ["x"], ["f"], func_opts)
    return func, [[-32., 32.]] * n, [[0.] * n]
コード例 #16
0
def generate_ackleyn3(n=2,
                      a=200,
                      b=0.02,
                      c=5.,
                      d=3.,
                      func_opts={},
                      data_type=cs.SX):
    if n != 2:
        raise ValueError("ackleyn3 is only defined for n=2")
    x = data_type.sym("x", n)
    f = -a * cs.exp(-b * cs.sqrt(x[0]**2 + x[1]**2))
    f += c * cs.exp(cs.cos(d * x[0]) + cs.sin(d * x[1]))
    func = cs.Function("ackleyn3", [x], [f], ["x"], ["f"], func_opts)
    glob_min = [[0.682584587365898, -0.36075325513719],
                [-0.682584587365898, -0.36075325513719]]
    return func, [[-32., 32.]] * n, glob_min
コード例 #17
0
def generate_ackleyn2(n=2, a=200, b=0.02, func_opts={}, data_type=cs.SX):
    if n != 2:
        raise ValueError("ackleyn2 is only defined for n=2")
    x = data_type.sym("x", n)
    f = -a * cs.exp(-b * cs.sqrt(x[0]**2 + x[1]**2))
    func = cs.Function("ackleyn2", [x], [f], ["x"], ["f"], func_opts)
    return func, [[-32., 32.]] * n, [[0.] * n]
コード例 #18
0
def solve_enumerative(obj_fn):
    bbax = bax()
    yvals = np.zeros((nFac), dtype=int)
    rvals = np.zeros((nIndiv))
    uvals = np.full((nIndiv), -np.inf)
    for ind, gp in enumerate(bbax.bax_gen(nFac, nSelectedFac)):
        gp = gp.toList()
        xlist = [
            gp[np.argmin([dist[i][j] for j in gp])] for i in range(nIndiv)
        ]
        r = [dist[i][xlist[i]] for i in range(nIndiv)]
        u = obj_fn(r)
        print(f"Obj is {sum(u)}")
        if sum(u) > sum(uvals):
            uvals = u
            rvals = r
            yvals = np.zeros((nFac), dtype=int)
            yvals[gp] = 1
    print(f"Best obj is {sum(uvals)}")
    fstar = sum(uvals)
    prob_success = [
        1 / (1 + exp(-beta[0] - beta[1] * theta[i] - beta[2] * rvals[i]))
        for i in range(nIndiv)
    ]
    print(f"Solved enumeratively")
    return yvals, rvals, uvals, prob_success, fstar, obj_fn.extra_info
コード例 #19
0
def Model(param, x, args):
    T = x[:, 0]
    A, B = param[0], param[1]

    return exp(
        A / 8.31446 + B / (8.31446 * T) -
        (68.2 / 8.31446) * log(T / 298.15))  # Pvp calculation - vectorized
コード例 #20
0
def _k_mat52(x,
             y=None,
             variance=1.,
             lengthscale=None,
             diag_only=False,
             ARD=False):
    """ Evaluate the Matern52 kernel function symbolically using Casadi"""
    n_x, dim_x = x.shape

    if diag_only:
        ret = SX(n_x, )
        ret[:] = variance
        return ret

    if y is None:
        y = x
    n_y, _ = np.shape(y)

    if lengthscale is None:
        if ARD:
            lengthscale = np.ones((dim_x, ))
        else:
            lengthscale = 1.

    if ARD is False:
        lengthscale = lengthscale * np.ones((dim_x, ))

    lens_x = repmat(lengthscale.reshape(1, -1), n_x)
    lens_y = repmat(lengthscale.reshape(1, -1), n_y)

    r = _unscaled_dist(x / lens_x, y / lens_y)
    # GPY: self.variance*(1+np.sqrt(5.)*r+5./3*r**2)*np.exp(-np.sqrt(5.)*r)
    return variance * (1. + sqrt(5.) * r + 5. / 3 * r**2) * exp(-sqrt(5.) * r)
コード例 #21
0
def Cd_profile_2412(alpha, Re_c):
    # A curve fit I did to a NACA 2412 airfoil in incompressible flow.
    # Within -2 < alpha < 12 and 10^5 < Re_c < 10^7, has R^2 = 0.9713

    print(
        "Warning: Cd_profile_e216() recommended over Cd_profile_2412(); those are MUCH more accurate fits."
    )

    Re_c = cas.fmax(Re_c, 1)
    log_Re = cas.log(Re_c)

    CD0 = -5.249
    Re0 = 15.61
    Re1 = 15.31
    alpha0 = 1.049
    alpha1 = -4.715
    cx = 0.009528
    cxy = -0.00588
    cy = 0.04838

    log_CD = CD0 + cx * (alpha - alpha0)**2 + cy * (log_Re - Re0)**2 + cxy * (
        alpha - alpha1) * (log_Re - Re1
                           )  # basically, a rotated paraboloid in logspace
    CD = cas.exp(log_CD)

    return CD
コード例 #22
0
 def cal(self, x, style="casadi"):
     #         return self.f(x)
     if (style == "casadi"):
         exp_x = csd.exp(x)
     elif (style == "numpy"):
         exp_x = np.exp(x)
     return exp_x / (1 + exp_x)
コード例 #23
0
def generate_brent(n=2, a=10., b=10., func_opts={}, data_type=cs.SX):
    if n != 2:
        raise ValueError("brent is only defined for n=2")
    x = data_type.sym("x", n)
    f = (x[0] + a)**2 + (x[1] + b)**2 + cs.exp(-cs.sumsqr(x))
    func = cs.Function("brent", [x], [f], ["x"], ["f"], func_opts)
    return func, [[-20., 0.]] * n, [[-10.] * n]
コード例 #24
0
def generate_easom(n=2, func_opts={}, data_type=cs.SX):
    if n != 2:
        raise ValueError("easom is only defined for n=2")
    x = data_type.sym("x", n)
    exponential = cs.exp(-(x[0] - cs.pi)**2 - (x[1] - cs.pi)**2)
    f = -cs.cos(x[0]) * cs.cos(x[1]) * exponential
    func = cs.Function("easom", [x], [f], ["x"], ["f"], func_opts)
    return func, [[-100., 100.]] * n, [[cs.pi, cs.pi]]
コード例 #25
0
def solve_casadi():
    opti = Opti()
    x = [[opti.variable() for j in range(nFac)]
         for i in range(nIndiv)]  # nIndiv X nFac
    y = [opti.variable() for j in range(nFac)]
    r = [opti.variable() for i in range(nIndiv)]
    u = [opti.variable() for i in range(nIndiv)]
    discrete = []
    discrete += [False for j in range(nFac) for i in range(nIndiv)
                 ]  #x variables - will be binary without integer constraint
    discrete += [True for j in range(nFac)]  #y variables
    discrete += [False for i in range(nIndiv)]  #r variables
    discrete += [False for i in range(nIndiv)]  #u variables
    opti.minimize(-sum(u))  #maximize sum u
    opti.subject_to([
        u[i] == -log(1 + exp(-beta[0] - beta[1] * theta[i] - beta[2] * r[i]))
        for i in range(nIndiv)
    ])  #log prob(success)
    # opti.subject_to([u[i] == 1/(1+exp(-beta[0] - beta[1]*theta[i] - beta[2]*r[i])) for i in range(nIndiv)]) #prob(success)
    opti.subject_to([
        r[i] >= sum([dist[i, j] * x[i][j] for j in range(nFac)])
        for i in range(nIndiv)
    ])
    opti.subject_to([sum(x[i]) == 1 for i in range(nIndiv)])
    opti.subject_to(
        [x[i][j] <= y[j] for i in range(nIndiv) for j in range(nFac)])
    opti.subject_to(sum(y) <= nSelectedFac)
    opti.subject_to([opti.bounded(0, y[j], 1) for j in range(nFac)])
    opti.subject_to([
        opti.bounded(0, x[i][j], 1) for i in range(nIndiv) for j in range(nFac)
    ])
    p_options = {"discrete": discrete, "expand": True}
    s_options = {"max_iter": 100, 'tol': 100}
    opti.solver('bonmin', p_options, s_options)
    sol = opti.solve()
    # possibilities for tolerance in s_options (https://web.casadi.org/python-api/):
    #only 'tol' works...
    # for key in ['tol','boundTolerance','epsIterRef','terminationTolerance','abstol','opttol']:
    # 	try:
    # 		s_options = {"max_iter": 100,key: .1}
    # 		opti.solver('bonmin',p_options,s_options)
    # 		sol = opti.solve()
    # 		print(f"NOTE: '{key}' works in s_options!!")
    # 	except Exception as e:
    # 		print(e)
    # 		print(f"NOTE: '{key}' is not a valid s_option!")

    xvals = np.round(
        np.array([[sol.value(x[i][j]) for j in range(nFac)]
                  for i in range(nIndiv)])).astype(int)
    yvals = np.array([sol.value(y[j]) for j in range(nFac)]).astype(int)
    rvals = np.array([sol.value(r[i]) for i in range(nIndiv)])
    uvals = np.array([sol.value(u[i]) for i in range(nIndiv)])
    # prob_success = np.array([1/(1+exp(-beta[0] - beta[1]*theta[i] - beta[2]*rvals[i])) for i in range(nIndiv)])
    prob_success = np.exp(uvals)
    fstar = sol.value(opti.f)
    print(f"Solved using CasADI")
    return xvals, yvals, rvals, uvals, prob_success, fstar
コード例 #26
0
def mvg_mgf(t, mu, sigma):
    """Multivariate Gaussian Moment Generating Function.

    Args:
        t (1D array): 
        mu (1D array): 
        sigma (2D array): 
    """
    return casadi.exp(mu.T @ t + 0.5 * t.T @ sigma @ t)
コード例 #27
0
def incidence_angle_function(latitude, day_of_year, time, scattering=False):
    """
    What is the fraction of insolation that a horizontal surface will receive as a function of sun position in the sky?
    :param latitude: Latitude [degrees]
    :param day_of_year: Julian day (1 == Jan. 1, 365 == Dec. 31)
    :param time: Time since (local) solar noon [seconds]
    :param scattering: Boolean: include scattering effects at very low angles?
    """
    # Old description:
    # To first-order, this is true. In class, Kevin Uleck claimed that you have higher-than-cosine losses at extreme angles,
    # since you get reflection losses. However, an experiment by Sharma appears to not reproduce this finding, showing only a
    # 0.4-percentage-point drop in cell efficiency from 0 to 60 degrees. So, for now, we'll just say it's a cosine loss.
    # Sharma: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6611928/

    elevation_angle = solar_elevation_angle(latitude, day_of_year, time)

    theta = 90 - elevation_angle  # Angle between panel normal and the sun, in degrees
    cosine_factor = cosd(theta)

    if not scattering:
        return cosine_factor
    else:
        # Calculate scattering knockdown (See C:\Users\User\Google Drive\School\Grad School\2020 Spring\16-885\Solar Panel Scattering Rough Fit)
        theta_rad = theta * cas.pi / 180
        # Model 1
        c = (0.27891510500505767300438719757949,
             -0.015994330894744987481281839336589,
             -19.707332432605799255043166340329,
             -0.66260979582573353852126274432521)
        scattering_factor = c[0] + c[3] * theta_rad + cas.exp(
            c[1] * (cas.tan(theta_rad - 1e-8) + c[2] * theta_rad))
        # Model 2
        # c = (
        #     -0.04636,
        #     -0.3171
        # )
        # scattering_factor = cas.exp(
        #     c[0] * (
        #         cas.tan(theta_rad-1e-8) + c[1] * theta_rad
        #     )
        # )
        # Model 3
        # p1 = -21.74
        # p2 = 282.6
        # p3 = -1538
        # p4 = 1786
        # q1 = -923.2
        # q2 = 1456
        # x = theta_rad
        # scattering_factor = ((p1*x**3 + p2*x**2 + p3*x + p4) /
        #            (x**2 + q1*x + q2))

        # scattering_factor = cas.fmin(cas.fmax(scattering_factor, 0), 1)

        return cosine_factor * scattering_factor
コード例 #28
0
ファイル: markov_casadi.py プロジェクト: phubaba/stats
def get_h_i_t():
    w_i, alpha_i, beta_i, b_i, c_i, mu_i, v_i, h_tm1_agg_i, delta_t_agg_i = casadi.SX.sym('w_i'), casadi.SX.sym('alpha_i'), casadi.SX.sym('beta_i'), casadi.SX.sym('b_i'), casadi.SX.sym('c_i'), casadi.SX.sym('mu_i'), casadi.SX.sym('v_i'), casadi.SX.sym('h_tm1_agg_i'), casadi.SX.sym('delta_t_agg_i'),
    boolM = mu_i > 0
    sqrthtpowmu = casadi.sqrt(h_tm1_agg_i) ** mu_i
    zTrue = (w_i + alpha_i * sqrthtpowmu * f_i(delta_t_agg_i, b_i, c_i) ** v_i + beta_i * sqrthtpowmu) ** (2./mu_i)
    sqrtht = casadi.sqrt(h_tm1_agg_i)
    zFalse= (casadi.exp(w_i + alpha_i * f_i(delta_t_agg_i, b_i, c_i)  ** v_i + beta_i * casadi.log(sqrtht)) ** (2.))
    z = casadi.if_else(boolM, zTrue, zFalse)
    return casadi.Function('h_i_t',
        [w_i, alpha_i, beta_i, b_i, c_i, mu_i, v_i, h_tm1_agg_i, delta_t_agg_i],
        [z])
コード例 #29
0
def prod(x, axis: int = None):
    """
    Return the product of array elements over a given axis.

    See syntax here: https://numpy.org/doc/stable/reference/generated/numpy.prod.html
    """
    if not is_casadi_type(x):
        return _onp.prod(x, axis=axis)

    else:
        return _cas.exp(sum(_cas.log(x), axis=axis))
コード例 #30
0
def fermination_ode(t, x, u, p, z):
    """
    Fermination model
    """
    k_dc = p[0]
    k_dm = p[1]
    s_i = p[2]

    T = u[0]

    x_lag = x[0]
    x_active = x[1]
    x_bottom = x[2]
    s = x[3]
    e = x[4]
    acet = x[5]
    diac = x[6]

    mu_x0 = ca.exp(108.31 - 31934.09 / (T+273.15))
    mu_eas = ca.exp(89.92 - 26589 / (T+273.15))
    mu_s0 = ca.exp( -41.92 + 11654.64/ (T+273.15))
    mu_lag = ca.exp(30.72 - 9501.54 / (T+273.15))
    k_dc = 0.000127672
    k_m = ca.exp( 130.16 - 38313 / (T+273.15))
    mu_D0 = ca.exp( 33.82 - 10033.28/ (T+273.15))
    mu_a0 = ca.exp(3.72 - 1267.24 / (T+273.15))
    k_s = ca.exp(-119.63 + 34203.95 / (T + 273.15))
    k_dm = 0.00113864

    mu_x = mu_x0 * s / (0.5 * s_i + e)
    mu_D = 0.5 * s_i * mu_D0 / (0.5 * s_i + e)
    mu_s = mu_s0 * s / (k_s + s)
    mu_a = mu_a0 * s / (k_s + s)
    f = 1 - e / (0.5 * s_i)

    dx_lag = - mu_lag * x_lag
    dx_active = mu_x * x_active - k_m * x_active + mu_lag * x_lag
    dx_bottom = k_m * x_active - mu_D * x_bottom
    ds = - mu_s * x_active
    de = mu_a * f * x_active
    dacet = - mu_eas * mu_s * x_active
    ddiac = k_dc * s * x_active - k_dm * diac * e
    rhs = [dx_lag,
           dx_active,
           dx_bottom,
           ds,
           de,
           dacet,
           ddiac
           ]
    return ca.vertcat(*rhs)
コード例 #31
0
def CasadiRBF(X, Y, model):
    """ RBF kernel in CasADi
    """
    sX = X.shape[0]
    sY = Y.shape[0]    
    length_scale = model.kernel_.get_params()['k1__k2__length_scale'].reshape(1,-1)
    constant = model.kernel_.get_params()['k1__k1__constant_value']
    X = X / cs.repmat(length_scale, sX , 1)
    Y = Y / cs.repmat(length_scale, sY , 1)
    dist = cs.repmat(cs.sum1(X.T**2).T,1,sY) + cs.repmat(cs.sum1(Y.T**2),sX,1) - 2*cs.mtimes(X,Y.T)
    K = constant*cs.exp(-.5 * dist)
    return K
コード例 #32
0
ファイル: markov_casadi.py プロジェクト: phubaba/stats
def get_f():
    r_t, h_i_tm1, lambda_i, gamma_i = casadi.SX.sym('r_t'), casadi.SX.sym('h_i_tm1'), casadi.SX.sym('lambda_i'), casadi.SX.sym('gamma_i')
    z = 1/casadi.sqrt(2*numpy.pi * h_i_tm1) * casadi.exp(-((r_t - (lambda_i + gamma_i * casadi.sqrt(h_i_tm1))) ** 2.) / (2 * h_i_tm1))
    return casadi.Function('f', [r_t, h_i_tm1, lambda_i, gamma_i], [z])