def test_D(): s = symbols('s') C = Rational(3, 2) L = Rational(1, 3) r = Rational(1, 2) # series L, shunt C C0 = Cascade.Series(L * s) C1 = Cascade.Series(1 / (C * s)) C2 = Cascade.Shunt(1 / r) print("test_D") print(C0) print(C1) print(C2) print(C1.hit(C0)) print(C2.hit(C1.hit(C0))) Y = ratsimp(1 / C2.hit(C1.hit(C0)).terminate(0)) print(Y) Z = ratsimp(1 / (Y - 2)) print(Z) Y = ratsimp(Z - s / 3) print(Y)
def test_B(): s, L, C, r = symbols('s L C r') # series L, shunt C C0 = Cascade.Series(L * s) C1 = Cascade.Shunt(C * s) print(simplify(C0.hit(C1).terminate(r)))
def test_E(): "Chop Chop example" s = symbols('s') print("test_E") Z = (2 * s**2 + 2 * s + 1) / (s * (s**2 + s + 1)) print(f"Z: {Z}") Z = ratsimp(Z) print(f"Z: {Z}") Z = ratsimp(Z - 1 / s) print(f"Z-1/s: {Z}") C = Cascade.Series(1 / s) Y = ratsimp(1 / Z - s) print(f"Y: {Y}") C = C.hit(Cascade.Shunt(s)) Z = ratsimp(1 / Y) print(f"Z: {Z-1-s}") C = C.hit(Cascade.Series(1 + s)).terminate(0) print(ratsimp(C))
def test_F(): "Hazony example 5.2.2" s = symbols('s') print("test_F") Z = (s**2 + s + 1) / (s**2 + 2 * s + 2) print(f"Z: {Z}") min_r = (3 - sympy.sqrt(2)) / 4 Z1 = ratsimp(Z - min_r) print(f"Z1: {Z1}") #plot_real_part( sympy.lambdify(s, Z1, "numpy")) Y1 = ratsimp(1 / Z - 1) print(f"Y1: {Y1}") C = Cascade.Shunt(1) Z2 = ratsimp(1 / Y1 - s) print(f"Z2: {Z2}") C = C.hit(Cascade.Series(s)) Y3 = ratsimp(1 / Z2 - s - 1) print(f"Y3: {Y3}") Ytotal = C.hit(Cascade.Shunt(1).hit( Cascade.Shunt(s))).terminate_with_admittance(0) assert sympy.Eq(0, ratsimp(1 / Ytotal - Z)) assert sympy.Eq(1, ratsimp(Ytotal * Z)) Ytotal = C.hit(Cascade.Shunt(s)).terminate_with_admittance(1) assert sympy.Eq(0, ratsimp(1 / Ytotal - Z)) assert sympy.Eq(1, ratsimp(Ytotal * Z)) Ytotal = C.terminate_with_admittance(1 + s) assert sympy.Eq(0, ratsimp(1 / Ytotal - Z)) assert sympy.Eq(1, ratsimp(Ytotal * Z))
def test_J(): "Second problem in Guillemin" s, k = symbols('s k') w = symbols('w', real=True) pprint("test_I") Z = (s**2 + s + 8) / (s**2 + 2 * s + 2) pprint(f"Z: {Z}") Y = 1 / Z #plot_real_part( sympy.lambdify(s, Y, "numpy")) real_part = cancel(sympy.re(Y.subs({s: sympy.I * w}))) print(f"real_part: {real_part}") roots = sympy.solveset(real_part, w) print(f"roots for w: {roots}") #plot( sympy.lambdify(w, real_part, "numpy")) w0 = 2 target0 = radsimp(Y.subs({s: sympy.I * w0}) / (sympy.I * w0)) print(f"target: {target0.evalf()}") target0 = Rational(1, 2) target1 = radsimp(Y.subs({s: sympy.I * w0}) * (sympy.I * w0)) print(f"target: {target1.evalf()}") target1 = Rational(2, 1) assert target0 > 0 eq = sympy.Eq(Y.subs({s: k}) / k, target0) #assert target1 > 0 #eq = sympy.Eq( Z.subs({s:k})*k, target1) roots = sympy.solveset(eq, k) print(f"roots for k: {roots}") k0 = Rational(1, 1) Y_k0 = Y.subs({s: k0}) print(k0, Y_k0) print(k0.evalf(), Y_k0.evalf()) den = cancel((k0 * Y_k0 - s * Y)) print(f"den factored: {sympy.factor(den)}") num = cancel((k0 * Y - s * Y_k0)) print(f"num factored: {sympy.factor(num)}") eta = cancel(num / den) print(k0, Y_k0, eta) print("normal") Y0 = eta * Y_k0 print(f"Y0: {Y0}") Z1 = ratsimp(1 / Y0 - 4) print(f"Z1: {Z1}") C = Cascade.Series(4) Y2 = ratsimp(1 / Z1) print(f"Y2: {Y2}") C = C.hit(Cascade.Shunt(s / 10)) C = C.hit(Cascade.Shunt(2 / (5 * s))) eta_Y_k0 = cancel(C.terminate_with_admittance(0)) print(f"eta_Y_k0: {eta_Y_k0}") assert sympy.Eq(cancel(eta_Y_k0 - Y0), 0) print("recip") Y0 = ratsimp(Y_k0 / eta) print(f"Y0: {Y0}") Y1 = ratsimp(Y0 - 1) print(f"Y1: {Y1}") C = Cascade.Shunt(1) Z2 = ratsimp(1 / Y1 - 2 * s / 5 - 8 / (5 * s)) print(f"Z2: {Z2}") C = C.hit(Cascade.Series(2 * s / 5)) C = C.hit(Cascade.Series(8 / (5 * s))) eta_over_Y_k0 = cancel(1 / C.terminate(0)) print(f"eta_over_Y_k0: {eta_over_Y_k0}") assert sympy.Eq(cancel(eta_over_Y_k0 - Y0), 0) def p(a, b): return a * b / (a + b) constructed_Y = cancel( p(eta_Y_k0, (k0 * Y_k0) / s) + p(eta_over_Y_k0, (Y_k0 * s) / k0)) print(f"constructed_Y: {constructed_Y}") assert sympy.Eq(cancel(constructed_Y - Y), 0)
def test_I(): "Hazony problem 5.3.a" s, k = symbols('s k') w = symbols('w', real=True) pprint("test_I") Z = (s**3 + 3 * s**2 + s + 1) / (s**3 + s**2 + 3 * s + 1) pprint(f"Z: {Z}") #plot_real_part( sympy.lambdify(s, Z, "numpy")) real_part = cancel(sympy.re(Z.subs({s: sympy.I * w}))) print(f"real_part: {real_part}") roots = sympy.solveset(real_part, w) print(f"roots for w: {roots}") #plot( sympy.lambdify(w, real_part, "numpy")) w0 = 1 target0 = radsimp(Z.subs({s: sympy.I * w0}) / (sympy.I * w0)) print(f"target: {target0}") target1 = radsimp(Z.subs({s: sympy.I * w0}) * (sympy.I * w0)) print(f"target: {target1}") assert target0 > 0 eq = sympy.Eq(Z.subs({s: k}) / k, target0) #assert target1 > 0 #eq = sympy.Eq( Z.subs({s:k})*k, target1) roots = sympy.solveset(eq, k) print(f"roots for k: {roots}") k0 = Rational(1, 1) Z_k0 = Z.subs({s: k0}) print(k0, Z_k0) print(k0.evalf(), Z_k0.evalf()) den = cancel((k0 * Z_k0 - s * Z)) print(f"den factored: {sympy.factor(den)}") num = cancel((k0 * Z - s * Z_k0)) print(f"num factored: {sympy.factor(num)}") eta = cancel(num / den) print(k0, Z_k0, eta) print("normal") Z0 = eta * Z_k0 print(f"Z0: {Z0}") Y1 = ratsimp(1 / Z0 - 1) print(f"Y1: {Y1}") C = Cascade.Shunt(1) Z2 = ratsimp(1 / Y1 - s / 2 - 1 / (2 * s)) print(f"Z2: {Z2}") C = C.hit(Cascade.Series(s / 2)) C = C.hit(Cascade.Series(1 / (2 * s))) eta_Z_k0 = cancel(C.terminate(0)) print(f"eta_Z_k0: {eta_Z_k0}") assert sympy.Eq(cancel(eta_Z_k0 - Z0), 0) print("recip") Z0 = cancel(Z_k0 / eta) print(f"Z0: {Z0}") Z1 = ratsimp(Z0 - 1) print(f"Z1: {Z1}") C = Cascade.Series(1) Y2 = ratsimp(1 / Z1 - s / 2 - 1 / (2 * s)) print(f"Y2: {Y2}") C = C.hit(Cascade.Shunt(s / 2)) C = C.hit(Cascade.Shunt(1 / (2 * s))) eta_over_Z_k0 = cancel(1 / C.terminate_with_admittance(0)) print(f"eta_over_Z_k0: {eta_over_Z_k0}") assert sympy.Eq(cancel(eta_over_Z_k0 - Z0), 0) def p(a, b): return a * b / (a + b) constructed_Z = cancel( p(eta_Z_k0, (k0 * Z_k0) / s) + p(eta_over_Z_k0, (Z_k0 * s) / k0)) print(f"constructed_Z: {constructed_Z}") assert sympy.Eq(cancel(constructed_Z - Z), 0)
def test_H(): "Hazony problem 5.3.a" s, k = symbols('s k') w = symbols('w', real=True) pprint("test_H") Z = (s**3 + 4 * s**2 + 5 * s + 8) / (2 * s**3 + 2 * s**2 + 20 * s + 9) pprint(f"Z: {Z}") #plot_real_part( sympy.lambdify(s, Z, "numpy")) real_part = cancel(sympy.re(Z.subs({s: sympy.I * w}))) print(f"real_part: {real_part}") roots = sympy.solveset(real_part, w) print(f"roots for w: {roots}") #plot( sympy.lambdify(w, real_part, "numpy")) w0 = sympy.sqrt(6) target0 = radsimp(Z.subs({s: sympy.I * w0}) / (sympy.I * w0)) print(f"target: {target0}") target1 = radsimp(Z.subs({s: sympy.I * w0}) * (sympy.I * w0)) print(f"target: {target1}") assert target0 > 0 eq = sympy.Eq(Z.subs({s: k}) / k, target0) #eq = sympy.Eq( Z.subs({s:k})*k, target1) print(f"eq: {eq}") roots = sympy.solveset(eq, k) print(f"roots for k: {roots}") k0 = Rational(1, 4) + sympy.sqrt(33) / 4 Z_k0 = Z.subs({s: k0}) print(k0, Z_k0) print(k0.evalf(), Z_k0.evalf()) return f = s**2 + 6 den = cancel((k0 * Z_k0 - s * Z) / f) print(f"den factored: {sympy.factor(den)}") num = cancel((k0 * Z - s * Z_k0) / f) print(f"num factored: {sympy.factor(num).evalf()}") print(sympy.factor(cancel(den / num))) return eta = cancel(((k0 * Z - s * Z_k0) / (k0 * Z_k0 - s * Z)).evalf()) print(k0, Z_k0, eta) print(k0, Z_k0, eta.evalf()) print("normal") Z0 = eta * Z_k0 print(f"Z0: {Z0}") Y1 = cancel(1 / Z0 - 4) print(f"Y1: {Y1}") C = Cascade.Shunt(4) Z2 = cancel(1 / Y1 - s / 6 - 1 / (3 * s)) print(f"Z2: {Z2}") C = C.hit(Cascade.Series(s / 6)) C = C.hit(Cascade.Series(1 / (3 * s))) eta_Z_k0 = cancel(C.terminate(0)) print(f"eta_Z_k0: {eta_Z_k0}") assert sympy.Eq(cancel(eta_Z_k0 - Z0), 0) print("recip") Z0 = cancel(Z_k0 / eta) print(f"Z0: {Z0}") Z1 = cancel(Z0 - 1) print(f"Z1: {Z1}") C = Cascade.Series(1) Y2 = cancel(1 / Z1 - 2 * s / 3 - 4 / (3 * s)) print(f"Y2: {Y2}") C = C.hit(Cascade.Shunt(2 * s / 3)) C = C.hit(Cascade.Shunt(4 / (3 * s))) eta_over_Z_k0 = cancel(1 / C.terminate_with_admittance(0)) print(f"eta_over_Z_k0: {eta_over_Z_k0}") assert sympy.Eq(cancel(eta_over_Z_k0 - Z0), 0) def p(a, b): return 1 / (1 / a + 1 / b) constructed_Z = cancel( p(eta_Z_k0, (k0 * Z_k0) / s) + p(eta_over_Z_k0, (Z_k0 * s) / k0)) print(f"constructed_Z: {constructed_Z}") assert sympy.Eq(cancel(constructed_Z - Z), 0)
def test_G(): "Hazony example 5.2.2" s, k = symbols('s k') pprint("test_G") Z = (s**2 + s + 1) / (s**2 + s + 4) pprint(f"Z: {Z}") #plot_real_part( sympy.lambdify(s, Z, "numpy")) w0 = sympy.sqrt(2) target = radsimp(Z.subs({s: sympy.I * w0}) / (sympy.I * w0)) print(f"target: {target}") eq = sympy.Eq(Z.subs({s: k}) / k, target) roots = sympy.solveset(eq, k) if True: for k0 in roots: Z_k0 = Z.subs({s: k0}) eta = cancel((k0 * Z - s * Z_k0) / (k0 * Z_k0 - s * Z)) print(k0, Z_k0, eta) #plot_real_part( sympy.lambdify(s, eta, "numpy")) k0 = 1 Z_k0 = Z.subs({s: k0}) eta = cancel((k0 * Z - s * Z_k0) / (k0 * Z_k0 - s * Z)) print(k0, Z_k0, eta) print("normal") Z0 = eta * Z_k0 print(f"Z0: {Z0}") Y1 = cancel(1 / Z0 - 4) print(f"Y1: {Y1}") C = Cascade.Shunt(4) Z2 = cancel(1 / Y1 - s / 6 - 1 / (3 * s)) print(f"Z2: {Z2}") C = C.hit(Cascade.Series(s / 6)) C = C.hit(Cascade.Series(1 / (3 * s))) eta_Z_k0 = cancel(C.terminate(0)) print(f"eta_Z_k0: {eta_Z_k0}") assert sympy.Eq(cancel(eta_Z_k0 - Z0), 0) print("recip") Z0 = cancel(Z_k0 / eta) print(f"Z0: {Z0}") Z1 = cancel(Z0 - 1) print(f"Z1: {Z1}") C = Cascade.Series(1) Y2 = cancel(1 / Z1 - 2 * s / 3 - 4 / (3 * s)) print(f"Y2: {Y2}") C = C.hit(Cascade.Shunt(2 * s / 3)) C = C.hit(Cascade.Shunt(4 / (3 * s))) eta_over_Z_k0 = cancel(1 / C.terminate_with_admittance(0)) print(f"eta_over_Z_k0: {eta_over_Z_k0}") assert sympy.Eq(cancel(eta_over_Z_k0 - Z0), 0) def p(a, b): return 1 / (1 / a + 1 / b) constructed_Z = cancel( p(eta_Z_k0, (k0 * Z_k0) / s) + p(eta_over_Z_k0, (Z_k0 * s) / k0)) print(f"constructed_Z: {constructed_Z}") assert sympy.Eq(cancel(constructed_Z - Z), 0)
def test_A(): r0, r1, r = 100, 200, 1 R0 = Cascade.Series(r0) R1 = Cascade.Series(r1) assert 301 == R0.hit(R1).terminate(r)