コード例 #1
0
power.enterInitMode()
window.enterInitMode()

# Solve initialisation.
# Notice the order in which the FMUs can be given inputs and obtained outputs.

power.setValues(
    0, 0, {
        power.i: 0.0,
        power.omega: 0.0,
        power.theta: 0.0,
        power.up: env_up(0.0),
        power.down: env_down(0.0)
    })

pOut = power.getValues(0, 0, [power.omega, power.theta])

window.setValues(0, 0, {
    window.omega_input: pOut[power.omega],
    window.theta_input: pOut[power.theta]
})

wOut = window.getValues(0, 0, [window.tau])

power.setValues(0, 0, {power.tau: wOut[window.tau]})

power.exitInitMode()
window.exitInitMode()

trace_i = [0.0]
trace_omega = [0.0]
コード例 #2
0
trace_omega = [0.0]
times = [0.0]

START_STEP_SIZE = 0.01
STOP_TIME = 10.0
time = 0.0
l.debug("START_STEP_SIZE=%f", START_STEP_SIZE)

for step in range(1, int(STOP_TIME / START_STEP_SIZE) + 1):
    power.setValues(step, 0, {
        power.tau: 0.0,
        power.up: env_up(time),
        power.down: env_down(time)
    })
    power.doStep(time, step, 0, START_STEP_SIZE)
    values = power.getValues(step, 0, [power.omega, power.i])
    times.append(time)
    trace_omega.append(values[power.omega])
    trace_i.append(values[power.i])
    time += START_STEP_SIZE

color_pallete = [
    "#e41a1c", "#377eb8", "#4daf4a", "#984ea3", "#ff7f00", "#ffff33",
    "#a65628", "#f781bf"
]

output_file("./results.html", title="Results")
p = figure(title="Plot", x_axis_label='time', y_axis_label='')
p.line(x=range(len(trace_omega)),
       y=trace_omega,
       legend="trace_omega",
                               [environment.out_up, environment.out_down])

# Set power initial state
power.setValues(
    step,
    iteration,
    {
        power.omega: 0.0,
        power.theta: 0.0,
        power.i: 0.0,
        power.tau: 0.0,  # Delayed input
        power.up: 0.0,  # Delayed input
        power.down: 0.0  # Delayed input
    })
# Get power initial outputs
pOut = power.getValues(step, iteration, [power.omega, power.theta, power.i])

# Set obstacle initial inputs
# Assume they are zero because the outputs of the window are delayed.
obstacle.setValues(step, iteration, {obstacle.x: 0.0})
# Get obstacle outputs
oOut = obstacle.getValues(step, iteration, [obstacle.F])

# Set window inputs
window.setValues(
    step, iteration, {
        window.omega_input: pOut[power.omega],
        window.theta_input: pOut[power.theta],
        window.F_obj: oOut[obstacle.F]
    })
# Get window outputs
class AlgebraicAdaptation_Power_Window_Obstacle(AbstractSimulationUnit):
    """
    This is the adaptation that realizes the strong coupling between the power,
    window, and obstacle units.
    """
    def __init__(self, name, num_rtol, num_atol, START_STEP_SIZE,
                 FMU_START_RATE):

        self._num_rtol = num_rtol
        self._num_atol = num_atol

        self._max_iterations = 100

        self._power = PowerFMU("power",
                               num_rtol,
                               num_atol,
                               START_STEP_SIZE / FMU_START_RATE,
                               J=0.085,
                               b=5,
                               K=7.45,
                               R=0.15,
                               L=0.036,
                               V_a=12)

        self.omega = self._power.omega
        self.theta = self._power.theta

        self._window = WindowFMU("window",
                                 num_rtol,
                                 num_atol,
                                 START_STEP_SIZE / FMU_START_RATE,
                                 r=0.11,
                                 b=10)

        self._obstacle = ObstacleFMU("obstacle",
                                     num_rtol,
                                     num_atol,
                                     START_STEP_SIZE / FMU_START_RATE,
                                     c=1e5,
                                     fixed_x=0.45)

        self.up = self._power.up
        self.down = self._power.down

        input_vars = [self.down, self.up]

        self.i = self._power.i
        self.omega = self._power.omega
        self.theta = self._power.theta
        self.x = self._window.x
        self.F = self._obstacle.F

        state_vars = [self.i, self.omega, self.theta, self.x, self.F]

        algebraic_functions = {}

        AbstractSimulationUnit.__init__(self, name, algebraic_functions,
                                        state_vars, input_vars)

    def _isClose(self, a, b):
        return numpy.isclose(a, b, self._num_rtol, self._num_atol)

    def _biggerThan(self, a, b):
        return not numpy.isclose(a, b, self._num_rtol,
                                 self._num_atol) and a > b

    def _doInternalSteps(self, time, step, iteration, step_size):
        l.debug(">%s._doInternalSteps(%f, %d, %d, %f)", self._name, time, step,
                iteration, step_size)

        assert step_size > 0.0, "step_size too small: {0}".format(step_size)
        #assert self._biggerThan(step_size, 0), "step_size too small: {0}".format(step_size)
        assert iteration == 0, "Fixed point iterations not supported outside of this component."

        converged = False
        internal_iteration = 0

        cOut = self.getValues(step, iteration, [self.up, self.down])
        wOut = self._window.getValues(step - 1, iteration,
                                      [self._window.x, self._window.tau])
        pOut = None

        while not converged and internal_iteration < self._max_iterations:
            self._power.setValues(
                step,
                iteration,
                {
                    self._power.tau: wOut[self._window.tau],  # Delayed input
                    self._power.up: cOut[self.up],
                    self._power.down: cOut[self.down]
                })
            self._power.doStep(time, step, iteration, step_size)
            pOut = self._power.getValues(
                step, iteration,
                [self._power.omega, self._power.theta, self._power.i])

            self._obstacle.setValues(
                step, iteration,
                {self._obstacle.x: wOut[self._window.x]})  # Delayed input
            self._obstacle.doStep(time, step, iteration, step_size)
            oOut = self._obstacle.getValues(step, iteration,
                                            [self._obstacle.F])

            self._window.setValues(
                step, iteration, {
                    self._window.omega_input: pOut[self._power.omega],
                    self._window.theta_input: pOut[self._power.theta],
                    self._window.F_obj: oOut[self._obstacle.F]
                })
            self._window.doStep(time, step, iteration, step_size)
            wOut_corrected = self._window.getValues(
                step, iteration, [self._window.x, self._window.tau])

            l.debug("Iteration step completed:")
            l.debug("wOut=%s;", wOut)
            l.debug("wOut_corrected=%s.", wOut_corrected)


            if self._isClose(wOut[self._window.x], wOut_corrected[self._window.x]) \
                and self._isClose(wOut[self._window.tau], wOut_corrected[self._window.tau]):
                converged = True

            internal_iteration = internal_iteration + 1
            wOut = wOut_corrected

        if converged:
            l.debug("Fixed point found after %d iterations",
                    internal_iteration)
        else:
            l.debug("Fixed point not found after %d iterations",
                    internal_iteration)
            raise RuntimeError("Fixed point not found")

        AbstractSimulationUnit.setValues(
            self, step, iteration, {
                self.i: pOut[self._power.i],
                self.theta: pOut[self._power.theta],
                self.omega: pOut[self._power.omega],
                self.x: wOut[self._window.x],
                self.F: oOut[self._obstacle.F]
            })

        l.debug("<%s._doInternalSteps() = (%s, %d)", self._name, STEP_ACCEPT,
                step_size)
        return (STEP_ACCEPT, step_size)

    def setValues(self, step, iteration, values):
        l.debug(
            ">%s.AlgebraicAdaptation_Power_Window_Obstacle.setValues(%d, %d, %s)",
            self._name, step, iteration, values)

        # Filter just the inputs.
        inputs = {self.up: values[self.up], self.down: values[self.down]}

        AbstractSimulationUnit.setValues(self, step, iteration, inputs)

        if self._mode == INIT_MODE:
            # Initialize the internal FMUs and compute the value of the armature.

            l.debug("Initializing strong component...")

            step = iteration = 0

            wOut_tau_delayed = 0.0
            wOut_x_delayed = 0.0

            # Set power inputs (or initial state, given by values)
            self._power.setValues(step, iteration, values)
            self._power.setValues(step, iteration,
                                  {self._power.tau: wOut_tau_delayed})

            # Get power initial outputs
            pOut = self._power.getValues(
                step, iteration,
                [self._power.omega, self._power.theta, self._power.i])

            # Set obstacle initial inputs
            # Assume they are zero because the outputs of the window are delayed.
            self._obstacle.setValues(step, iteration,
                                     {self._obstacle.x: wOut_x_delayed})
            # Get obstacle outputs
            oOut = self._obstacle.getValues(step, iteration,
                                            [self._obstacle.F])

            # Set window inputs
            self._window.setValues(
                step, iteration, {
                    self._window.omega_input: pOut[self._power.omega],
                    self._window.theta_input: pOut[self._power.theta],
                    self._window.F_obj: oOut[self._obstacle.F]
                })
            # Get window outputs
            wOut = self._window.getValues(step, iteration,
                                          [self._window.x, self._window.tau])

            # Set corrected power windows
            self._power.setValues(
                step,
                iteration,
                {
                    self._power.tau:
                    wOut[self._window.tau]  # Delayed input from window
                })

            # We know that convergence is easily achieved for this initialisation
            assert self._isClose(wOut[self._window.tau], wOut_tau_delayed)
            assert self._isClose(wOut[self._window.x], wOut_x_delayed)

            # Record the outputs
            AbstractSimulationUnit.setValues(
                self, step, iteration, {
                    self.i: pOut[self._power.i],
                    self.theta: pOut[self._power.theta],
                    self.omega: pOut[self._power.omega],
                    self.x: wOut[self._window.x],
                    self.F: oOut[self._obstacle.F]
                })

            l.debug("Strong component initialized.")

        l.debug("<%s.AlgebraicAdaptation_Power_Window_Obstacle.setValues()",
                self._name)

    def enterInitMode(self):
        l.debug(
            ">%s.AlgebraicAdaptation_Power_Window_Obstacle.enterInitMode()",
            self._name)

        AbstractSimulationUnit.enterInitMode(self)

        self._power.enterInitMode()
        self._window.enterInitMode()
        self._obstacle.enterInitMode()

        l.debug(
            "<%s.AlgebraicAdaptation_Power_Window_Obstacle.enterInitMode()",
            self._name)

    def exitInitMode(self):
        l.debug(">%s.AlgebraicAdaptation_Power_Window_Obstacle.exitInitMode()",
                self._name)

        AbstractSimulationUnit.exitInitMode(self)

        self._power.exitInitMode()
        self._window.exitInitMode()
        self._obstacle.exitInitMode()

        l.debug("<%s.AlgebraicAdaptation_Power_Window_Obstacle.exitInitMode()",
                self._name)