コード例 #1
0
ファイル: upload_context.py プロジェクト: wuyibo0817/webkit
    class UploadsByConfiguration(ClusteredByConfiguration):
        __table_name__ = 'uploads_by_configuration_01'
        suite = columns.Text(partition_key=True, required=True)
        branch = columns.Text(partition_key=True, required=True)
        uuid = columns.BigInt(primary_key=True,
                              required=True,
                              clustering_order='DESC')
        sdk = columns.Text(primary_key=True, required=True)
        commits = columns.Blob(required=True)
        test_results = columns.Blob(required=True)
        time_uploaded = columns.DateTime(required=True)
        upload_version = columns.Integer(required=True)

        def unpack(self):
            return dict(
                commits=[
                    Commit.from_json(element) for element in json.loads(
                        UploadContext.from_zip(bytearray(self.commits)))
                ],
                sdk=None if self.sdk == '?' else self.sdk,
                test_results=json.loads(
                    UploadContext.from_zip(bytearray(self.test_results))),
                timestamp=calendar.timegm(self.time_uploaded.timetuple()),
                version=self.upload_version,
            )
コード例 #2
0
class fingerdata(Model):
    createtime = columns.DateTime()
    modifytime = columns.DateTime()
    userid = columns.Text(primary_key=True)
    fid = columns.Text()
    fingerdata = columns.Blob()
    fingerdata_length = columns.Integer()
コード例 #3
0
ファイル: loader.py プロジェクト: dawnkd/beehive-server
class MessageData(Model):

    node_id = columns.Text(partition_key=True)
    date = columns.Date(partition_key=True)
    topic = columns.Text(primary_key=True)
    created_at = columns.DateTime(primary_key=True)
    received_at = columns.DateTime(required=True)
    body = columns.Blob(required=True)
コード例 #4
0
class SensorData(Model):

    node_id = columns.Text(partition_key=True)
    date = columns.Date(partition_key=True)
    created_at = columns.DateTime(primary_key=True)
    received_at = columns.DateTime()
    plugin_id = columns.Text(primary_key=True)
    topic = columns.Text()
    data = columns.Blob()
コード例 #5
0
ファイル: loader.py プロジェクト: dawnkd/beehive-server
class MessageLog(Model):

    __options__ = {
        'default_time_to_live': 259200,
    }

    node_id = columns.Text(partition_key=True)
    topic = columns.Text(primary_key=True)
    created_at = columns.DateTime(primary_key=True)
    received_at = columns.DateTime(required=True)
    body = columns.Blob(required=True)
コード例 #6
0
ファイル: loader.py プロジェクト: smuniz-vates/beehive-stack
class SensorDataLog(Model):

    __options__ = {
        'default_time_to_live': 60,
    }

    node_id = columns.Text(partition_key=True)
    created_at = columns.DateTime(primary_key=True)
    received_at = columns.DateTime()
    plugin_id = columns.Text(primary_key=True)
    topic = columns.Text()
    data = columns.Blob()
コード例 #7
0
ファイル: test_context.py プロジェクト: visnix/WebKit
    class TestResultsBase(ClusteredByConfiguration):
        suite = columns.Text(partition_key=True, required=True)
        branch = columns.Text(partition_key=True, required=True)
        test = columns.Text(partition_key=True, required=True)
        expected = columns.Blob(required=True)
        actual = columns.Blob(required=True)
        details = columns.Text(required=False)

        def unpack(self):
            result = dict(
                uuid=self.uuid,
                start_time=calendar.timegm(self.start_time.timetuple()),
                expected=Expectations.state_ids_to_string(self.expected),
                actual=Expectations.state_ids_to_string(self.actual),
            )
            for key, value in (json.loads(self.details)
                               if self.details else {}).items():
                if key in result:
                    continue
                result[key] = value
            return result
コード例 #8
0
class AllDatatypes(UserType):
    a = columns.Ascii()
    b = columns.BigInt()
    c = columns.Blob()
    d = columns.Boolean()
    e = columns.DateTime()
    f = columns.Decimal()
    g = columns.Double()
    h = columns.Float()
    i = columns.Inet()
    j = columns.Integer()
    k = columns.Text()
    l = columns.TimeUUID()
    m = columns.UUID()
    n = columns.VarInt()
コード例 #9
0
class ClassifierNetwork(Model):
    """Cassandra Model that represents classifier neural network.

    Variables:
    ------------------
    id: UUID.

    configuration_id: Id of host aggregate.

    model: Neural network model in bytes.

    x_maxima: Maximal values of network input data."""

    configuration_id = columns.Text(primary_key=True)
    model = columns.Blob()
    x_maxima = columns.Map(columns.Integer, columns.Double)
コード例 #10
0
 class AllDatatypesModel(Model):
     id = columns.Integer(primary_key=True)
     a = columns.Ascii()
     b = columns.BigInt()
     c = columns.Blob()
     d = columns.Boolean()
     e = columns.DateTime()
     f = columns.Decimal()
     g = columns.Double()
     h = columns.Float()
     i = columns.Inet()
     j = columns.Integer()
     k = columns.Text()
     l = columns.TimeUUID()
     m = columns.UUID()
     n = columns.VarInt()
コード例 #11
0
ファイル: archive_context.py プロジェクト: samchan1995/webkit
    class ArchivesByCommit(ClusteredByConfiguration):
        __table_name__ = 'archives_by_commit'
        suite = columns.Text(partition_key=True, required=True)
        branch = columns.Text(partition_key=True, required=True)
        uuid = columns.BigInt(primary_key=True,
                              required=True,
                              clustering_order='DESC')
        sdk = columns.Text(primary_key=True, required=True)
        start_time = columns.BigInt(primary_key=True, required=True)
        archive = columns.Blob(required=True)

        def unpack(self):
            return dict(
                uuid=self.uuid,
                start_time=self.start_time,
                archive=io.BytesIO(self.archive),
            )
コード例 #12
0
class Notification(BaseModel):
    """
    Table to store notifications queues in cassandra

    user_id: user's id to which notification belongs to.
    notif_id: time UUID V1 (en.wikipedia.org/wiki/Universally_unique_identifier)
    emitter : backend entity that's emitting the message.
    type: a single word to describe notification's type: event, info, feedback..
    reference: (optional) a reference number previously sent by frontend.
    body: could be a simple word or a more complex structure like a json.

    """

    user_id = columns.UUID(primary_key=True)
    notif_id = columns.TimeUUID(primary_key=True)
    emitter = columns.Text()
    type = columns.Ascii()
    reference = columns.Text()
    body = columns.Blob()
コード例 #13
0
class PredictorNetwork(Model):
    """Cassandra Model that represents predictor neural network.

    Variables:
    ------------------
    id: UUID.

    configuration_id: Id of host aggregate.

    image: Name of workload image.

    category: Name of workload category.

    model: Neural network model in bytes.

    x_maxima: Maximal values of network input data.

    y_maxima: Maximal values of network output data."""

    image = columns.Text(primary_key=True)
    category = columns.Text(primary_key=True)
    model = columns.Blob()
    x_maxima = columns.Map(columns.Integer(), columns.Double())
    y_maxima = columns.Map(columns.Integer(), columns.Double())
コード例 #14
0
class NexusTileData(Model):
    __table_name__ = 'sea_surface_temp'
    tile_id = columns.UUID(primary_key=True)
    tile_blob = columns.Blob()

    __nexus_tile = None

    def _get_nexus_tile(self):
        if self.__nexus_tile is None:
            self.__nexus_tile = nexusproto.TileData.FromString(self.tile_blob)

        return self.__nexus_tile

    def get_raw_data_array(self):

        nexus_tile = self._get_nexus_tile()
        the_tile_type = nexus_tile.tile.WhichOneof("tile_type")

        the_tile_data = getattr(nexus_tile.tile, the_tile_type)

        return from_shaped_array(the_tile_data.variable_data)

    def get_lat_lon_time_data_meta(self):
        if self._get_nexus_tile().HasField('grid_tile'):
            grid_tile = self._get_nexus_tile().grid_tile

            grid_tile_data = np.ma.masked_invalid(from_shaped_array(grid_tile.variable_data))
            latitude_data = np.ma.masked_invalid(from_shaped_array(grid_tile.latitude))
            longitude_data = np.ma.masked_invalid(from_shaped_array(grid_tile.longitude))

            if len(grid_tile_data.shape) == 2:
                grid_tile_data = grid_tile_data[np.newaxis, :]

            # Extract the meta data
            meta_data = {}
            for meta_data_obj in grid_tile.meta_data:
                name = meta_data_obj.name
                meta_array = np.ma.masked_invalid(from_shaped_array(meta_data_obj.meta_data))
                if len(meta_array.shape) == 2:
                    meta_array = meta_array[np.newaxis, :]
                meta_data[name] = meta_array

            return latitude_data, longitude_data, np.array([grid_tile.time]), grid_tile_data, meta_data
        elif self._get_nexus_tile().HasField('swath_tile'):
            swath_tile = self._get_nexus_tile().swath_tile

            latitude_data = np.ma.masked_invalid(from_shaped_array(swath_tile.latitude)).reshape(-1)
            longitude_data = np.ma.masked_invalid(from_shaped_array(swath_tile.longitude)).reshape(-1)
            time_data = np.ma.masked_invalid(from_shaped_array(swath_tile.time)).reshape(-1)

            # Simplify the tile if the time dimension is the same value repeated
            if np.all(time_data == np.min(time_data)):
                time_data = np.array([np.min(time_data)])

            swath_tile_data = np.ma.masked_invalid(from_shaped_array(swath_tile.variable_data))

            tile_data = self._to_standard_index(swath_tile_data,
                                                (len(time_data), len(latitude_data), len(longitude_data)))

            # Extract the meta data
            meta_data = {}
            for meta_data_obj in swath_tile.meta_data:
                name = meta_data_obj.name
                actual_meta_array = np.ma.masked_invalid(from_shaped_array(meta_data_obj.meta_data))
                reshaped_meta_array = self._to_standard_index(actual_meta_array, tile_data.shape)
                meta_data[name] = reshaped_meta_array

            return latitude_data, longitude_data, time_data, tile_data, meta_data
        elif self._get_nexus_tile().HasField('time_series_tile'):
            time_series_tile = self._get_nexus_tile().time_series_tile

            time_series_tile_data = np.ma.masked_invalid(from_shaped_array(time_series_tile.variable_data))
            time_data = np.ma.masked_invalid(from_shaped_array(time_series_tile.time)).reshape(-1)
            latitude_data = np.ma.masked_invalid(from_shaped_array(time_series_tile.latitude))
            longitude_data = np.ma.masked_invalid(from_shaped_array(time_series_tile.longitude))

            reshaped_array = np.ma.masked_all((len(time_data), len(latitude_data), len(longitude_data)))
            idx = np.arange(len(latitude_data))
            reshaped_array[:, idx, idx] = time_series_tile_data
            tile_data = reshaped_array
            # Extract the meta data
            meta_data = {}
            for meta_data_obj in time_series_tile.meta_data:
                name = meta_data_obj.name
                meta_array = np.ma.masked_invalid(from_shaped_array(meta_data_obj.meta_data))

                reshaped_meta_array = np.ma.masked_all((len(time_data), len(latitude_data), len(longitude_data)))
                idx = np.arange(len(latitude_data))
                reshaped_meta_array[:, idx, idx] = meta_array

                meta_data[name] = reshaped_meta_array

            return latitude_data, longitude_data, time_data, tile_data, meta_data
        else:
            raise NotImplementedError("Only supports grid_tile, swath_tile, and time_series_tile")

    @staticmethod
    def _to_standard_index(data_array, desired_shape):

        if desired_shape[0] == 1:
            reshaped_array = np.ma.masked_all((desired_shape[1], desired_shape[2]))
            row, col = np.indices(data_array.shape)

            reshaped_array[np.diag_indices(desired_shape[1], len(reshaped_array.shape))] = data_array[
                row.flat, col.flat]
            reshaped_array.mask[np.diag_indices(desired_shape[1], len(reshaped_array.shape))] = data_array.mask[
                row.flat, col.flat]
            reshaped_array = reshaped_array[np.newaxis, :]
        else:
            reshaped_array = np.ma.masked_all(desired_shape)
            row, col = np.indices(data_array.shape)

            reshaped_array[np.diag_indices(desired_shape[1], len(reshaped_array.shape))] = data_array[
                row.flat, col.flat]
            reshaped_array.mask[np.diag_indices(desired_shape[1], len(reshaped_array.shape))] = data_array.mask[
                row.flat, col.flat]

        return reshaped_array
コード例 #15
0
class LinearModel(Model):
    name = columns.Text(primary_key=True, required=True)
    model = columns.Blob(required=True)
コード例 #16
0
from cassandra.cqlengine import columns
from django_cassandra_engine.models import DjangoCassandraModel

# Create your models here.
filename = columns.Text(primary_key=True)
content = columns.Blob()
コード例 #17
0
 class ArchiveChunks(Model):
     __table_name__ = 'archive_chunks'
     digest = columns.Text(partition_key=True, required=True)
     index = columns.Integer(primary_key=True, required=True)
     chunk = columns.Blob(required=True)
コード例 #18
0
class NexusTileData(Model):
    __table_name__ = 'sea_surface_temp'
    tile_id = columns.UUID(primary_key=True)
    tile_blob = columns.Blob()

    __nexus_tile = None

    def _get_nexus_tile(self):
        if self.__nexus_tile is None:
            self.__nexus_tile = nexusproto.TileData.FromString(self.tile_blob)

        return self.__nexus_tile

    def get_raw_data_array(self):

        nexus_tile = self._get_nexus_tile()
        the_tile_type = nexus_tile.tile.WhichOneof("tile_type")

        the_tile_data = getattr(nexus_tile.tile, the_tile_type)

        return from_shaped_array(the_tile_data.variable_data)

    def get_lat_lon_time_data_meta(self):
        """
        Retrieve data from data store and metadata from metadata store
        for this tile. For gridded tiles, the tile shape of the data
        will match the input shape. For example, if the input was a
        30x30 tile, all variables will also be 30x30. However, if the
        tile is a swath tile, the data will be transformed along the
        diagonal of the data matrix. For example, a 30x30 tile would
        become 900x900 where the 900 points are along the diagonal.

        Multi-variable tile will also include an extra dimension in the
        data array. For example, a 30 x 30 x 30 array would be
        transformed to N x 30 x 30 x 30 where N is the number of
         variables in this tile.

        latitude_data, longitude_data, np.array([grid_tile.time]), grid_tile_data, meta_data, is_multi_var

        :return: latitude data
        :return: longitude data
        :return: time data
        :return: data
        :return: meta data dictionary
        :return: boolean flag, True if this tile has more than one variable
        """
        is_multi_var = False

        if self._get_nexus_tile().HasField('grid_tile'):
            grid_tile = self._get_nexus_tile().grid_tile

            grid_tile_data = np.ma.masked_invalid(
                from_shaped_array(grid_tile.variable_data))
            latitude_data = np.ma.masked_invalid(
                from_shaped_array(grid_tile.latitude))
            longitude_data = np.ma.masked_invalid(
                from_shaped_array(grid_tile.longitude))

            if len(grid_tile_data.shape) == 2:
                grid_tile_data = grid_tile_data[np.newaxis, :]

            # Extract the meta data
            meta_data = {}
            for meta_data_obj in grid_tile.meta_data:
                name = meta_data_obj.name
                meta_array = np.ma.masked_invalid(
                    from_shaped_array(meta_data_obj.meta_data))
                if len(meta_array.shape) == 2:
                    meta_array = meta_array[np.newaxis, :]
                meta_data[name] = meta_array

            return latitude_data, longitude_data, np.array(
                [grid_tile.time]), grid_tile_data, meta_data, is_multi_var
        elif self._get_nexus_tile().HasField('swath_tile'):
            swath_tile = self._get_nexus_tile().swath_tile

            latitude_data = np.ma.masked_invalid(
                from_shaped_array(swath_tile.latitude)).reshape(-1)
            longitude_data = np.ma.masked_invalid(
                from_shaped_array(swath_tile.longitude)).reshape(-1)
            time_data = np.ma.masked_invalid(from_shaped_array(
                swath_tile.time)).reshape(-1)

            # Simplify the tile if the time dimension is the same value repeated
            if np.all(time_data == np.min(time_data)):
                time_data = np.array([np.min(time_data)])

            swath_tile_data = np.ma.masked_invalid(
                from_shaped_array(swath_tile.variable_data))

            tile_data = self._to_standard_index(
                swath_tile_data,
                (len(time_data), len(latitude_data), len(longitude_data)))

            # Extract the meta data
            meta_data = {}
            for meta_data_obj in swath_tile.meta_data:
                name = meta_data_obj.name
                actual_meta_array = np.ma.masked_invalid(
                    from_shaped_array(meta_data_obj.meta_data))
                reshaped_meta_array = self._to_standard_index(
                    actual_meta_array, tile_data.shape)
                meta_data[name] = reshaped_meta_array

            return latitude_data, longitude_data, time_data, tile_data, meta_data, is_multi_var
        elif self._get_nexus_tile().HasField('time_series_tile'):
            time_series_tile = self._get_nexus_tile().time_series_tile

            time_series_tile_data = np.ma.masked_invalid(
                from_shaped_array(time_series_tile.variable_data))
            time_data = np.ma.masked_invalid(
                from_shaped_array(time_series_tile.time)).reshape(-1)
            latitude_data = np.ma.masked_invalid(
                from_shaped_array(time_series_tile.latitude))
            longitude_data = np.ma.masked_invalid(
                from_shaped_array(time_series_tile.longitude))

            reshaped_array = np.ma.masked_all(
                (len(time_data), len(latitude_data), len(longitude_data)))
            idx = np.arange(len(latitude_data))
            reshaped_array[:, idx, idx] = time_series_tile_data
            tile_data = reshaped_array
            # Extract the meta data
            meta_data = {}
            for meta_data_obj in time_series_tile.meta_data:
                name = meta_data_obj.name
                meta_array = np.ma.masked_invalid(
                    from_shaped_array(meta_data_obj.meta_data))

                reshaped_meta_array = np.ma.masked_all(
                    (len(time_data), len(latitude_data), len(longitude_data)))
                idx = np.arange(len(latitude_data))
                reshaped_meta_array[:, idx, idx] = meta_array

                meta_data[name] = reshaped_meta_array

            return latitude_data, longitude_data, time_data, tile_data, meta_data, is_multi_var
        elif self._get_nexus_tile().HasField('swath_multi_variable_tile'):
            swath_tile = self._get_nexus_tile().swath_multi_variable_tile
            is_multi_var = True

            latitude_data = np.ma.masked_invalid(
                from_shaped_array(swath_tile.latitude)).reshape(-1)
            longitude_data = np.ma.masked_invalid(
                from_shaped_array(swath_tile.longitude)).reshape(-1)
            time_data = np.ma.masked_invalid(from_shaped_array(
                swath_tile.time)).reshape(-1)

            # Simplify the tile if the time dimension is the same value repeated
            if np.all(time_data == np.min(time_data)):
                time_data = np.array([np.min(time_data)])

            swath_tile_data = np.ma.masked_invalid(
                from_shaped_array(swath_tile.variable_data))

            desired_shape = (
                len(time_data),
                len(latitude_data),
                len(longitude_data),
            )
            tile_data = self._to_standard_index(swath_tile_data,
                                                desired_shape,
                                                is_multi_var=True)

            # Extract the meta data
            meta_data = {}
            for meta_data_obj in swath_tile.meta_data:
                name = meta_data_obj.name
                actual_meta_array = np.ma.masked_invalid(
                    from_shaped_array(meta_data_obj.meta_data))
                reshaped_meta_array = self._to_standard_index(
                    actual_meta_array, tile_data.shape)
                meta_data[name] = reshaped_meta_array

            return latitude_data, longitude_data, time_data, tile_data, meta_data, is_multi_var
        elif self._get_nexus_tile().HasField('grid_multi_variable_tile'):
            grid_multi_variable_tile = self._get_nexus_tile(
            ).grid_multi_variable_tile
            is_multi_var = True

            grid_tile_data = np.ma.masked_invalid(
                from_shaped_array(grid_multi_variable_tile.variable_data))
            latitude_data = np.ma.masked_invalid(
                from_shaped_array(grid_multi_variable_tile.latitude))
            longitude_data = np.ma.masked_invalid(
                from_shaped_array(grid_multi_variable_tile.longitude))

            # If there are 3 dimensions, that means the time dimension
            # was squeezed. Add back in
            if len(grid_tile_data.shape) == 3:
                grid_tile_data = np.expand_dims(grid_tile_data, axis=1)
            # If there are 4 dimensions, that means the time dimension
            # is present. Move the multivar dimension.
            if len(grid_tile_data.shape) == 4:
                grid_tile_data = np.moveaxis(grid_tile_data, -1, 0)

            # Extract the meta data
            meta_data = {}
            for meta_data_obj in grid_multi_variable_tile.meta_data:
                name = meta_data_obj.name
                meta_array = np.ma.masked_invalid(
                    from_shaped_array(meta_data_obj.meta_data))
                if len(meta_array.shape) == 2:
                    meta_array = meta_array[np.newaxis, :]
                meta_data[name] = meta_array

            return latitude_data, longitude_data, np.array([
                grid_multi_variable_tile.time
            ]), grid_tile_data, meta_data, is_multi_var
        else:
            raise NotImplementedError(
                "Only supports grid_tile, swath_tile, swath_multi_variable_tile, and time_series_tile"
            )

    @staticmethod
    def _to_standard_index(data_array, desired_shape, is_multi_var=False):
        """
        Transform swath data to a standard format where data runs along
        diagonal of ND matrix and the non-diagonal data points are
        masked

        :param data_array: The data array to be transformed
        :param desired_shape: The desired shape of the resulting array
        :param is_multi_var: True if this is a multi-variable tile
        :type data_array: np.array
        :type desired_shape: tuple
        :type is_multi_var: bool
        :return: Reshaped array
        :rtype: np.array
        """

        if desired_shape[0] == 1:
            reshaped_array = np.ma.masked_all(
                (desired_shape[1], desired_shape[2]))
            row, col = np.indices(data_array.shape)

            reshaped_array[np.diag_indices(
                desired_shape[1],
                len(reshaped_array.shape))] = data_array[row.flat, col.flat]
            reshaped_array.mask[np.diag_indices(
                desired_shape[1],
                len(reshaped_array.shape))] = data_array.mask[row.flat,
                                                              col.flat]
            reshaped_array = reshaped_array[np.newaxis, :]
        elif is_multi_var == True:
            # Break the array up by variable. Translate shape from
            # len(times) x len(latitudes) x len(longitudes) x num_vars,
            # to
            # num_vars x len(times) x len(latitudes) x len(longitudes)
            reshaped_data_array = np.moveaxis(data_array, -1, 0)
            reshaped_array = []

            for variable_data_array in reshaped_data_array:
                variable_reshaped_array = np.ma.masked_all(desired_shape)
                row, col = np.indices(variable_data_array.shape)

                variable_reshaped_array[np.diag_indices(
                    desired_shape[1],
                    len(variable_reshaped_array.shape))] = variable_data_array[
                        row.flat, col.flat]
                variable_reshaped_array.mask[np.diag_indices(
                    desired_shape[1], len(variable_reshaped_array.shape)
                )] = variable_data_array.mask[row.flat, col.flat]
                reshaped_array.append(variable_reshaped_array)
        else:
            reshaped_array = np.ma.masked_all(desired_shape)
            row, col = np.indices(data_array.shape)

            reshaped_array[np.diag_indices(
                desired_shape[1],
                len(reshaped_array.shape))] = data_array[row.flat, col.flat]
            reshaped_array.mask[np.diag_indices(
                desired_shape[1],
                len(reshaped_array.shape))] = data_array.mask[row.flat,
                                                              col.flat]

        return reshaped_array
コード例 #19
0
class Record(Model):
    key = columns.Bytes(primary_key=True)
    enc_values = columns.List(columns.Blob())
コード例 #20
0
class ObjectKeyValue(Model):
    key = columns.UUID(primary_key=True)
    value = columns.Blob()