コード例 #1
0
    def __iter__(self):
        asset_cache = {}
        for dt, series in self.df.iterrows():
            if dt < self.start_date:
                continue

            if dt > self.end_date:
                return

            event = FetcherEvent()
            # when dt column is converted to be the dataframe's index
            # the dt column is dropped. So, we need to manually copy
            # dt into the event.
            event.dt = dt
            for k, v in series.iteritems():
                # convert numpy integer types to
                # int. This assumes we are on a 64bit
                # platform that will not lose information
                # by casting.
                # TODO: this is only necessary on the
                # amazon qexec instances. would be good
                # to figure out how to use the numpy dtypes
                # without this check and casting.
                if isinstance(v, numpy.integer):
                    v = int(v)

                setattr(event, k, v)

            # If it has start_date, then it's already an Asset
            # object from asset_for_symbol, and we don't have to
            # transform it any further. Checking for start_date is
            # faster than isinstance.
            if event.sid in asset_cache:
                event.sid = asset_cache[event.sid]
            elif hasattr(event.sid, 'start_date'):
                # Clone for user algo code, if we haven't already.
                asset_cache[event.sid] = event.sid
            elif self.finder and isinstance(event.sid, int):
                asset = self.finder.retrieve_asset(event.sid,
                                                   default_none=True)
                if asset:
                    # Clone for user algo code.
                    event.sid = asset_cache[asset] = asset
                elif self.mask:
                    # When masking drop all non-mappable values.
                    continue
                elif self.symbol is None:
                    # If the event's sid property is an int we coerce
                    # it into an Equity.
                    event.sid = asset_cache[event.sid] = Equity(event.sid)

            event.type = DATASOURCE_TYPE.CUSTOM
            event.source_id = self.namestring
            yield event
コード例 #2
0
    def test_correlation_and_regression_with_bad_asset(self):
        """
        Test that `RollingPearsonOfReturns`, `RollingSpearmanOfReturns` and
        `RollingLinearRegressionOfReturns` raise the proper exception when
        given a nonexistent target asset.
        """
        my_asset = Equity(0, exchange="TEST")
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        run_pipeline = self.run_pipeline

        # This filter is arbitrary; the important thing is that we test each
        # factor both with and without a specified mask.
        my_asset_filter = AssetID().eq(1)

        for mask in (NotSpecified, my_asset_filter):
            pearson_factor = RollingPearsonOfReturns(
                target=my_asset,
                returns_length=3,
                correlation_length=3,
                mask=mask,
            )
            spearman_factor = RollingSpearmanOfReturns(
                target=my_asset,
                returns_length=3,
                correlation_length=3,
                mask=mask,
            )
            regression_factor = RollingLinearRegressionOfReturns(
                target=my_asset,
                returns_length=3,
                regression_length=3,
                mask=mask,
            )

            with self.assertRaises(NonExistentAssetInTimeFrame):
                run_pipeline(
                    Pipeline(columns={'pearson_factor': pearson_factor}),
                    start_date,
                    end_date,
                )
            with self.assertRaises(NonExistentAssetInTimeFrame):
                run_pipeline(
                    Pipeline(columns={'spearman_factor': spearman_factor}),
                    start_date,
                    end_date,
                )
            with self.assertRaises(NonExistentAssetInTimeFrame):
                run_pipeline(
                    Pipeline(columns={'regression_factor': regression_factor}),
                    start_date,
                    end_date,
                )
コード例 #3
0
    def test_transaction_repr(self):
        dt = pd.Timestamp('2017-01-01')

        asset = Equity(1, exchange='test')
        txn = Transaction(asset, amount=100, dt=dt, price=10, order_id=0)

        expected = (
            "Transaction(asset=Equity(1), dt=2017-01-01 00:00:00,"
            " amount=100, price=10)"
        )

        self.assertEqual(repr(txn), expected)
コード例 #4
0
    def test_require_length_greater_than_one(self):
        my_asset = Equity(0, exchange="TEST")

        with self.assertRaises(ValueError):
            RollingPearsonOfReturns(
                target=my_asset,
                returns_length=3,
                correlation_length=1,
            )

        with self.assertRaises(ValueError):
            RollingSpearmanOfReturns(
                target=my_asset,
                returns_length=3,
                correlation_length=1,
            )

        with self.assertRaises(ValueError):
            RollingLinearRegressionOfReturns(
                target=my_asset,
                returns_length=3,
                regression_length=1,
            )