コード例 #1
0
ファイル: image2label.py プロジェクト: yangyuren03/catalyst
def main(args):
    model = models.__dict__[args.arch](pretrained=True)
    model = model.eval()
    model, device = UtilsFactory.prepare_model(model)

    labels = json.loads(open(args.labels).read())

    i2k = Images2Keywords(model, args.n_keywords, labels)

    images_df = pd.read_csv(args.in_csv)
    images_df = images_df.reset_index().drop("index", axis=1)
    images_df = list(images_df.to_dict("index").values())

    open_fn = ImageReader(input_key=args.img_col,
                          output_key="image",
                          datapath=args.datapath)

    dataloader = UtilsFactory.create_loader(images_df,
                                            open_fn,
                                            batch_size=args.batch_size,
                                            workers=args.n_workers,
                                            dict_transform=dict_transformer)

    keywords = []
    dataloader = tqdm(dataloader) if args.verbose else dataloader
    with torch.no_grad():
        for batch in dataloader:
            keywords_batch = i2k(batch["image"].to(device))
            keywords += keywords_batch

    input_csv = pd.read_csv(args.in_csv)
    input_csv[args.keywords_col] = keywords
    input_csv.to_csv(args.out_csv, index=False)
コード例 #2
0
def create_reader(root, num_classes):

    # ReaderCompose collects different Readers into one pipeline
    open_fn = ReaderCompose([

        # Reads images from the `datapath` folder
        # using the key `input_key =" filepath "` (here should be the filename)
        # and writes it to the output dictionary by `output_key="features"` key
        ImageReader(input_key="filepath", output_key="features",
                    datapath=root),

        # Reads a number from our dataframe
        # by the key `input_key =" label "` to np.long
        # and writes it to the output dictionary by `output_key="targets"` key
        ScalarReader(input_key="label",
                     output_key="targets",
                     default_value=-1,
                     dtype=np.int64),

        # Same as above, but with one encoding
        ScalarReader(input_key="label",
                     output_key="targets_one_hot",
                     default_value=-1,
                     dtype=np.int64,
                     one_hot_classes=num_classes)
    ])

    return open_fn
コード例 #3
0
ファイル: image2embedding.py プロジェクト: codeslord/catalyst
def main(args, _=None):
    global IMG_SIZE

    IMG_SIZE = (args.img_size, args.img_size)

    model = ResnetEncoder(arch=args.arch, pooling=args.pooling)
    model = model.eval()
    model, _, _, _, device = utils.process_components(model=model)

    images_df = pd.read_csv(args.in_csv)
    images_df = images_df.reset_index().drop("index", axis=1)
    images_df = list(images_df.to_dict("index").values())

    open_fn = ImageReader(input_key=args.img_col,
                          output_key="image",
                          datapath=args.datapath)

    dataloader = utils.get_loader(images_df,
                                  open_fn,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers,
                                  dict_transform=dict_transformer)

    features = []
    dataloader = tqdm(dataloader) if args.verbose else dataloader
    with torch.no_grad():
        for batch in dataloader:
            features_ = model(batch["image"].to(device))
            features_ = features_.cpu().detach().numpy()
            features.append(features_)

    features = np.concatenate(features, axis=0)
    np.save(args.out_npy, features)
コード例 #4
0
 def _get_train_open_fn(train_folder):
     return ReaderCompose(
         readers=[RowsReader(reader=ReaderCompose(
             readers=[
                 ImageReader(row_key="Image", dict_key="Image", datapath=train_folder),
                 TextReader(row_key="Id", dict_key="Id"),
                 TextReader(row_key="Image", dict_key="ImageFile")]))],
         mixins=[SiameseLabelMixin(
             dict_first_id_key="Id0", dict_second_id_key="Id1")]
     )
コード例 #5
0
def get_loaders(train_transforms_fn,
                valid_transforms_fn,
                config,
                batch_size: int = 8,
                num_workers: int = 20,
                sampler=None) -> OrderedDict:
    train_data, valid_data = get_datasets(config)

    open_fn = ReaderCompose([
        ImageReader(input_key="filepath",
                    output_key="features",
                    rootpath=config.root_images),
        ScalarReader(input_key="disease_type",
                     output_key="targets",
                     default_value=-1,
                     dtype=np.int64),
        ScalarReader(input_key="disease_type",
                     output_key="targets_one_hot",
                     default_value=-1,
                     dtype=np.int64,
                     one_hot_classes=config.num_classes)
    ])

    train_loader = utils.get_loader(
        train_data,
        open_fn=open_fn,
        dict_transform=train_transforms_fn,
        batch_size=batch_size,
        num_workers=num_workers,
        shuffle=sampler is
        None,  # shuffle data only if Sampler is not specified (PyTorch requirement)
        sampler=sampler,
        drop_last=True,
    )

    valid_loader = utils.get_loader(
        valid_data,
        open_fn=open_fn,
        dict_transform=valid_transforms_fn,
        batch_size=batch_size,
        num_workers=num_workers,
        shuffle=False,
        sampler=None,
        drop_last=True,
    )

    loaders = OrderedDict()
    loaders["train"] = train_loader
    loaders["valid"] = valid_loader

    return loaders
コード例 #6
0
def get_open_fn(data_root, num_class):
    open_fn = ReaderCompose([
        ImageReader(input_key="filepath",
                    output_key="features",
                    datapath=data_root),
        ScalarReader(input_key="label",
                     output_key="targets",
                     default_value=-1,
                     dtype=np.int64),
        ScalarReader(input_key="label",
                     output_key="targets_one_hot",
                     default_value=-1,
                     dtype=np.int64,
                     one_hot_classes=num_class)
    ])
    return open_fn
コード例 #7
0
def main(args, _=None):
    global IMG_SIZE

    utils.set_global_seed(args.seed)
    utils.prepare_cudnn(args.deterministic, args.benchmark)

    IMG_SIZE = (args.img_size, args.img_size)

    if args.traced_model is not None:
        device = utils.get_device()
        model = torch.jit.load(str(args.traced_model), map_location=device)
    else:
        model = ResnetEncoder(arch=args.arch, pooling=args.pooling)
        model = model.eval()
        model, _, _, _, device = utils.process_components(model=model)

    df = pd.read_csv(args.in_csv)
    df = df.reset_index().drop("index", axis=1)
    df = list(df.to_dict("index").values())

    open_fn = ImageReader(input_key=args.img_col,
                          output_key="image",
                          datapath=args.datapath)

    dataloader = utils.get_loader(df,
                                  open_fn,
                                  batch_size=args.batch_size,
                                  num_workers=args.num_workers,
                                  dict_transform=dict_transformer)

    features = []
    dataloader = tqdm(dataloader) if args.verbose else dataloader
    with torch.no_grad():
        for batch in dataloader:
            features_ = model(batch["image"].to(device))
            features_ = features_.cpu().detach().numpy()
            features.append(features_)

    features = np.concatenate(features, axis=0)
    np.save(args.out_npy, features)
コード例 #8
0
    def prepare_loaders(*,
                        mode: str,
                        stage: str = None,
                        n_workers: int = None,
                        batch_size: int = None,
                        datapath=None,
                        in_csv=None,
                        in_csv_train=None,
                        in_csv_valid=None,
                        in_csv_infer=None,
                        train_folds=None,
                        valid_folds=None,
                        tag2class=None,
                        class_column=None,
                        tag_column=None,
                        folds_seed=42,
                        n_folds=5):
        loaders = collections.OrderedDict()

        df, df_train, df_valid, df_infer = parse_in_csvs(
            in_csv=in_csv,
            in_csv_train=in_csv_train,
            in_csv_valid=in_csv_valid,
            in_csv_infer=in_csv_infer,
            train_folds=train_folds,
            valid_folds=valid_folds,
            tag2class=tag2class,
            class_column=class_column,
            tag_column=tag_column,
            folds_seed=folds_seed,
            n_folds=n_folds)

        open_fn = [
            ImageReader(input_key="filepath",
                        output_key="image",
                        datapath=datapath),
            ScalarReader(input_key="class",
                         output_key="targets",
                         default_value=-1,
                         dtype=np.int64)
        ]
        open_fn = ReaderCompose(readers=open_fn)

        if len(df_train) > 0:
            labels = [x["class"] for x in df_train]
            sampler = BalanceClassSampler(labels, mode="upsampling")

            train_loader = UtilsFactory.create_loader(
                data_source=df_train,
                open_fn=open_fn,
                dict_transform=DataSource.prepare_transforms(mode="train",
                                                             stage=stage),
                dataset_cache_prob=-1,
                batch_size=batch_size,
                workers=n_workers,
                shuffle=sampler is None,
                sampler=sampler)

            print("Train samples", len(train_loader) * batch_size)
            print("Train batches", len(train_loader))
            loaders["train"] = train_loader

        if len(df_valid) > 0:
            sampler = None

            valid_loader = UtilsFactory.create_loader(
                data_source=df_valid,
                open_fn=open_fn,
                dict_transform=DataSource.prepare_transforms(mode="valid",
                                                             stage=stage),
                dataset_cache_prob=-1,
                batch_size=batch_size,
                workers=n_workers,
                shuffle=False,
                sampler=sampler)

            print("Valid samples", len(valid_loader) * batch_size)
            print("Valid batches", len(valid_loader))
            loaders["valid"] = valid_loader

        if len(df_infer) > 0:
            infer_loader = UtilsFactory.create_loader(
                data_source=df_infer,
                open_fn=open_fn,
                dict_transform=DataSource.prepare_transforms(mode="infer",
                                                             stage=None),
                dataset_cache_prob=-1,
                batch_size=batch_size,
                workers=n_workers,
                shuffle=False,
                sampler=None)

            print("Infer samples", len(infer_loader) * batch_size)
            print("Infer batches", len(infer_loader))
            loaders["infer"] = infer_loader

        return loaders
コード例 #9
0
    def get_datasets(self,
                     stage: str,
                     datapath: str = None,
                     in_csv: str = None,
                     in_csv_train: str = None,
                     in_csv_valid: str = None,
                     in_csv_infer: str = None,
                     train_folds: str = None,
                     valid_folds: str = None,
                     tag2class: str = None,
                     class_column: str = None,
                     tag_column: str = None,
                     folds_seed: int = 42,
                     n_folds: int = 5,
                     one_hot_classes: int = None,
                     image_size: int = 224):
        datasets = collections.OrderedDict()
        tag2class = json.load(open(tag2class)) \
            if tag2class is not None \
            else None

        df, df_train, df_valid, df_infer = read_csv_data(
            in_csv=in_csv,
            in_csv_train=in_csv_train,
            in_csv_valid=in_csv_valid,
            in_csv_infer=in_csv_infer,
            train_folds=train_folds,
            valid_folds=valid_folds,
            tag2class=tag2class,
            class_column=class_column,
            tag_column=tag_column,
            seed=folds_seed,
            n_folds=n_folds)

        open_fn = [
            ImageReader(input_key="filepath",
                        output_key="image",
                        datapath=datapath),
            ScalarReader(input_key="class",
                         output_key="targets",
                         default_value=-1,
                         dtype=np.int64)
        ]

        if one_hot_classes:
            open_fn.append(
                ScalarReader(input_key="class",
                             output_key="targets_one_hot",
                             default_value=-1,
                             dtype=np.int64,
                             one_hot_classes=one_hot_classes))

        open_fn = ReaderCompose(readers=open_fn)

        for source, mode in zip((df_train, df_valid, df_infer),
                                ("train", "valid", "infer")):
            if len(source) > 0:
                dataset = ListDataset(
                    source,
                    open_fn=open_fn,
                    dict_transform=self.get_transforms(
                        stage=stage,
                        mode=mode,
                        image_size=image_size,
                        one_hot_classes=one_hot_classes),
                )
                if mode == "train":
                    labels = [x["class"] for x in source]
                    sampler = BalanceClassSampler(labels, mode="upsampling")
                    dataset = {"dataset": dataset, "sampler": sampler}
                datasets[mode] = dataset

        return datasets
コード例 #10
0
                          train_df,
                          left_on='image_id',
                          right_on='image_id')
df_with_labels["disease_type"] = df_with_labels["healthy"] * 0 + df_with_labels["multiple_diseases"] * 1 + \
                                 df_with_labels["rust"] * 2 + df_with_labels["scab"] * 3
df_with_labels.head(10)

train_data, valid_data = split_dataframe_train_test(df_with_labels,
                                                    test_size=0.3,
                                                    random_state=config.seed)
train_data, valid_data = train_data.to_dict('records'), valid_data.to_dict(
    'records')

open_fn = ReaderCompose([
    ImageReader(input_key="filepath",
                output_key="features",
                rootpath=config.root_images),
    ScalarReader(input_key="disease_type",
                 output_key="targets",
                 default_value=-1,
                 dtype=np.int64),
    ScalarReader(input_key="disease_type",
                 output_key="targets_one_hot",
                 default_value=-1,
                 dtype=np.int64,
                 one_hot_classes=config.num_classes)
])

train_transforms = compose(
    [pre_transforms(config.size),
     hard_transforms(),
コード例 #11
0
 def _get_infer_open_fn(train_folder, infer_folder):
     return RowsReader(
         reader=TextReader(row_key="Image", dict_key="ImageFile"),
         readers=[
             ImageReader(row_key="Image", dict_key="Image", datapath=train_folder),
             ImageReader(row_key="Image", dict_key="Image", datapath=infer_folder)])