def register(): registry.Criterion(RingLoss) registry.Callback(InferBestCallback) registry.Scheduler(OneCycleCosineAnnealLR) # classification try: from mlcomp.contrib.model import Pretrained registry.Model(Pretrained) except Exception: pass # segmentation registry.Model(Unet) registry.Model(ResnetLinknet) registry.Model(MobileUnet) registry.Model(ResnetUnet) registry.Model(ResnetFPNUnet) registry.Model(ResnetPSPnet) registry.Model(FPNUnet) registry.Model(Linknet) registry.Model(PSPnet) registry.Model(ResNetLinknet) try: from mlcomp.contrib.model.segmentation_model_pytorch import \ SegmentationModelPytorch registry.Model(SegmentationModelPytorch) except Exception: pass
def register(): registry.Model(Pretrained) registry.Criterion(RingLoss) registry.Callback(InferBestCallback) registry.Scheduler(OneCycleCosineAnnealLR) # segmentation registry.Model(Unet) registry.Model(ResnetLinknet) registry.Model(MobileUnet) registry.Model(ResnetUnet) registry.Model(ResnetFPNUnet) registry.Model(ResnetPSPnet) registry.Model(FPNUnet) registry.Model(Linknet) registry.Model(PSPnet)
registry.Model(SENetTIMM) registry.Model(InceptionV3TIMM) registry.Model(GluonResnetTIMM) registry.Model(DSInceptionV3) registry.Model(DSSENet) registry.Model(DSResnet) registry.Model(ResNet50CutMix) registry.Model(Fishnet) registry.Model(SENetCellType) registry.Model(SENetCellMultipleDropout) registry.Model(MixNet) # Register callbacks registry.Callback(LabelSmoothCriterionCallback) registry.Callback(SmoothMixupCallback) registry.Callback(DSAccuracyCallback) registry.Callback(DSCriterionCallback) registry.Callback(SlackLogger) registry.Callback(TwoHeadsCriterionCallback) registry.Callback(DSMixupCallback) # Register criterions registry.Criterion(LabelSmoothingCrossEntropy) # Register optimizers registry.Optimizer(AdamW) registry.Optimizer(Nadam) registry.Optimizer(RAdam) registry.Scheduler(CyclicLRFix)
# flake8: noqa # pylint: disable=unused-import from catalyst.dl import registry from transformers import AdamW, WarmupLinearSchedule from .experiment import Experiment from .catalyst_ext.runner import BertSupervisedRunner as Runner from .model_wrapper import BertModel from .catalyst_ext.bert_criterion import BertCrossEntropyLoss, BertCriterionCallback registry.Model(BertModel) registry.Criterion(BertCrossEntropyLoss) registry.Callback(BertCriterionCallback) registry.Optimizer(AdamW, name='TransformersAdamW') registry.Scheduler(WarmupLinearSchedule)
# flake8: noqa from .experiment import Experiment from catalyst.dl import registry from catalyst.dl import SupervisedRunner as Runner from src.callbacks.tensorboard import VisualizationCallback, ProjectorCallback from src.callbacks.cico.doe import DoECallback from src.callbacks.cico.benchmark import BenchmarkingCallback from src.models.cico.generic import GenericModel from src.schedulers.cosine import CosineAnnealingWarmUpRestarts from src.losses.cico.arcface import ArcFaceLinear, ArcFaceLoss, L2Norm from src.losses.cico.triplet import TripletSemiHardLoss registry.Model(GenericModel) registry.Module(L2Norm) registry.Module(ArcFaceLinear) registry.Criterion(ArcFaceLoss) registry.Criterion(TripletSemiHardLoss) registry.Callback(VisualizationCallback) registry.Callback(ProjectorCallback) registry.Callback(DoECallback) registry.Callback(BenchmarkingCallback) registry.Scheduler(CosineAnnealingWarmUpRestarts)
from .metrics import ( WeightedAUC, # for binary classification SingleClassWeightedAUC # for multiclass classification ) from .schedulers import CosineAnnealingWithRestartsLR from .criterions import LabelSmoothingLoss from .models import ( BinaryEfficientNet, MulticlassEfficientNet, StemMulticlassEfficientNet, BinaryDensenet, LLFEfficientNet, patch_efficientnet_backbone, patch_efficientnet_conv_stem, ) registry.Callback(WeightedAUC) registry.Callback(SingleClassWeightedAUC) registry.Scheduler(CosineAnnealingWithRestartsLR) registry.Criterion(LabelSmoothingLoss) registry.Model(BinaryEfficientNet) registry.Model(MulticlassEfficientNet) registry.Model(StemMulticlassEfficientNet) registry.Model(BinaryDensenet) registry.Model(LLFEfficientNet) registry.Model(patch_efficientnet_backbone) registry.Model(patch_efficientnet_conv_stem)