コード例 #1
0
 def init_instance_fixtures(self):
     super(TestRisk, self).init_instance_fixtures()
     self.start_session = pd.Timestamp("2006-01-01", tz='UTC')
     self.end_session = self.trading_calendar.minute_to_session_label(
         pd.Timestamp("2006-12-31", tz='UTC'),
         direction="previous"
     )
     self.sim_params = SimulationParameters(
         start_session=self.start_session,
         end_session=self.end_session,
         trading_calendar=self.trading_calendar,
     )
     self.algo_returns = factory.create_returns_from_list(
         RETURNS,
         self.sim_params
     )
     self.benchmark_returns = factory.create_returns_from_list(
         BENCHMARK,
         self.sim_params
     )
     self.metrics = risk.RiskReport(
         self.algo_returns,
         self.sim_params,
         benchmark_returns=self.benchmark_returns,
         trading_calendar=self.trading_calendar,
         treasury_curves=self.env.treasury_curves,
     )
コード例 #2
0
    def _test_treasury_returns(self):
        returns = factory.create_returns_from_range(self.sim_params)
        metrics = risk.RiskReport(returns,
                                  self.sim_params,
                                  trading_calendar=self.trading_calendar,
                                  treasury_curves=self.env.treasury_curves,
                                  benchmark_returns=self.env.benchmark_returns)
        self.assertEqual([
            round(x.treasury_period_return, 4) for x in metrics.month_periods
        ], [
            0.0037, 0.0034, 0.0039, 0.0038, 0.0040, 0.0037, 0.0043, 0.0043,
            0.0038, 0.0044, 0.0043, 0.004
        ])

        self.assertEqual([
            round(x.treasury_period_return, 4)
            for x in metrics.three_month_periods
        ], [
            0.0114, 0.0116, 0.0122, 0.0125, 0.0129, 0.0127, 0.0123, 0.0128,
            0.0125, 0.0127
        ])
        self.assertEqual([
            round(x.treasury_period_return, 4)
            for x in metrics.six_month_periods
        ], [0.0260, 0.0257, 0.0258, 0.0252, 0.0259, 0.0256, 0.0257])

        self.assertEqual(
            [round(x.treasury_period_return, 4) for x in metrics.year_periods],
            [0.0500])
コード例 #3
0
ファイル: tracker.py プロジェクト: wildfish/catalyst
    def handle_simulation_end(self):
        """
        When the simulation is complete, run the full period risk report
        and send it out on the results socket.
        """

        log_msg = "Simulated {n} trading days out of {m}."
        log.info(log_msg.format(n=int(self.session_count),
                                m=self.total_session_count))
        log.info("first open: {d}".format(
            d=self.sim_params.first_open))
        log.info("last close: {d}".format(
            d=self.sim_params.last_close))

        bms = pd.Series(
            index=self.cumulative_risk_metrics.cont_index,
            data=self.cumulative_risk_metrics.benchmark_returns_cont)
        ars = pd.Series(
            index=self.cumulative_risk_metrics.cont_index,
            data=self.cumulative_risk_metrics.algorithm_returns_cont)
        acl = self.cumulative_risk_metrics.algorithm_cumulative_leverages

        risk_report = risk.RiskReport(
            ars,
            self.sim_params,
            benchmark_returns=bms,
            algorithm_leverages=acl,
            trading_calendar=self.trading_calendar,
            treasury_curves=self.treasury_curves,
        )

        return risk_report.to_dict()
コード例 #4
0
    def _test_benchmarkrange(self):
        start_session = self.trading_calendar.minute_to_session_label(
            pd.Timestamp("2008-01-01", tz='UTC'))

        end_session = self.trading_calendar.minute_to_session_label(
            pd.Timestamp("2010-01-01", tz='UTC'), direction="previous")

        sim_params = SimulationParameters(
            start_session=start_session,
            end_session=end_session,
            trading_calendar=self.trading_calendar,
        )

        returns = factory.create_returns_from_range(sim_params)
        metrics = risk.RiskReport(returns,
                                  self.sim_params,
                                  trading_calendar=self.trading_calendar,
                                  treasury_curves=self.env.treasury_curves,
                                  benchmark_returns=self.env.benchmark_returns)

        self.check_metrics(metrics, 24, start_session)
コード例 #5
0
    def _test_algorithm_sortino(self):
        # The sortino ratio is calculated by a empyrical function so testing
        # of period sortino ratios will be limited to determine if the value is
        # numerical. This tests for its existence and format.

        # This test needs a different result set that, with some
        # negative results, otherwise fails in a legitimate way.

        RETURNS = (np.random.rand(251) * 0.1) - 0.05

        self.algo_returns = factory.create_returns_from_list(
            RETURNS, self.sim_params)

        self.metrics = risk.RiskReport(
            self.algo_returns,
            self.sim_params,
            benchmark_returns=self.benchmark_returns,
            trading_calendar=self.trading_calendar,
            treasury_curves=self.env.treasury_curves,
        )

        for x in self.metrics.month_periods:
            print(type(x.sortino))

        np.testing.assert_equal(
            all(
                isinstance(x.sortino, float)
                for x in self.metrics.month_periods), True)
        np.testing.assert_equal(
            all(
                isinstance(x.sortino, float)
                for x in self.metrics.three_month_periods), True)
        np.testing.assert_equal(
            all(
                isinstance(x.sortino, float)
                for x in self.metrics.six_month_periods), True)
        np.testing.assert_equal(
            all(
                isinstance(x.sortino, float)
                for x in self.metrics.year_periods), True)
コード例 #6
0
    def test_partial_month(self):

        start_session = self.trading_calendar.minute_to_session_label(
            pd.Timestamp("1993-02-01", tz='UTC')
        )

        # 1992 and 1996 were leap years
        total_days = 365 * 5 + 2
        end_session = start_session + datetime.timedelta(days=total_days)
        sim_params90s = SimulationParameters(
            start_session=start_session,
            end_session=end_session,
            trading_calendar=self.trading_calendar,
        )

        returns = factory.create_returns_from_range(sim_params90s)
        returns = returns[:-10]  # truncate the returns series to end mid-month
        metrics = risk.RiskReport(returns, sim_params90s,
                                  trading_calendar=self.trading_calendar,
                                  treasury_curves=self.env.treasury_curves,
                                  benchmark_returns=self.env.benchmark_returns)
        total_months = 60
        self.check_metrics(metrics, total_months, start_session)