def test_regression_method_bad_type(self): """ Make sure we cannot call the Factor linear regression method on factors or slices that are not of float or int dtype. """ # These are arbitrary for the purpose of this test. returns_length = 2 regression_length = 10 returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[self.my_asset] class BadTypeFactor(CustomFactor): window_length = 1 inputs = [] dtype = datetime64ns_dtype window_safe = True def compute(self, today, assets, out): pass bad_type_factor = BadTypeFactor() bad_type_factor_slice = bad_type_factor[self.my_asset] with self.assertRaises(TypeError): bad_type_factor.linear_regression( target=returns_slice, regression_length=regression_length, ) with self.assertRaises(TypeError): returns.linear_regression( target=bad_type_factor_slice, regression_length=regression_length, )
def _test_factor_regression_method(self, returns_length, regression_length): """ Ensure that `Factor.linear_regression` is consistent with the built-in factor `RollingLinearRegressionOfReturns`. """ my_asset = self.my_asset start_date = self.pipeline_start_date end_date = self.pipeline_end_date run_pipeline = self.run_pipeline returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[my_asset] regression = returns.linear_regression( target=returns_slice, regression_length=regression_length, ) expected_regression = RollingLinearRegressionOfReturns( target=my_asset, returns_length=returns_length, regression_length=regression_length, ) # This built-in constructs its own Returns factor to use as an input, # so the only way to set our own input is to do so after the fact. This # should not be done in practice. It is necessary here because we want # Returns to use our random data as an input, but by default it is # using USEquityPricing.close. expected_regression.inputs = [returns, returns_slice] columns = { 'regression': regression, 'expected_regression': expected_regression, } results = run_pipeline(Pipeline(columns=columns), start_date, end_date) regression_results = results['regression'].unstack() expected_regression_results = results['expected_regression'].unstack() assert_frame_equal(regression_results, expected_regression_results)
def test_factor_regression_method(self, returns_length, regression_length): """ Ensure that `Factor.linear_regression` is consistent with the built-in factor `RollingLinearRegressionOfReturns`. """ my_asset = self.my_asset start_date = self.pipeline_start_date end_date = self.pipeline_end_date run_pipeline = self.run_pipeline returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[my_asset] regression = returns.linear_regression( target=returns_slice, regression_length=regression_length, ) expected_regression = RollingLinearRegressionOfReturns( target=my_asset, returns_length=returns_length, regression_length=regression_length, ) # This built-in constructs its own Returns factor to use as an input, # so the only way to set our own input is to do so after the fact. This # should not be done in practice. It is necessary here because we want # Returns to use our random data as an input, but by default it is # using USEquityPricing.close. expected_regression.inputs = [returns, returns_slice] columns = { 'regression': regression, 'expected_regression': expected_regression, } results = run_pipeline(Pipeline(columns=columns), start_date, end_date) regression_results = results['regression'].unstack() expected_regression_results = results['expected_regression'].unstack() assert_frame_equal(regression_results, expected_regression_results)
def test_factor_regression_method_two_factors(self, regression_length): """ Tests for `Factor.linear_regression` when passed another 2D factor instead of a Slice. """ assets = self.assets dates = self.dates start_date = self.pipeline_start_date end_date = self.pipeline_end_date start_date_index = self.start_date_index end_date_index = self.end_date_index num_days = self.num_days run_pipeline = self.run_pipeline # The order of these is meant to align with the output of `linregress`. outputs = ['beta', 'alpha', 'r_value', 'p_value', 'stderr'] # Ensure that the `linear_regression` method cannot be called with two # 2D factors which have different masks. returns_masked_1 = Returns( window_length=5, inputs=[self.col], mask=AssetID().eq(1), ) returns_masked_2 = Returns( window_length=5, inputs=[self.col], mask=AssetID().eq(2), ) with self.assertRaises(IncompatibleTerms): returns_masked_1.linear_regression( target=returns_masked_2, regression_length=regression_length, ) returns_5 = Returns(window_length=5, inputs=[self.col]) returns_10 = Returns(window_length=10, inputs=[self.col]) regression_factor = returns_5.linear_regression( target=returns_10, regression_length=regression_length, ) columns = { output: getattr(regression_factor, output) for output in outputs } pipeline = Pipeline(columns=columns) results = run_pipeline(pipeline, start_date, end_date) output_results = {} expected_output_results = {} for output in outputs: output_results[output] = results[output].unstack() expected_output_results[output] = full_like( output_results[output], nan, ) # Run a separate pipeline that calculates returns starting # (regression_length - 1) days prior to our start date. This is because # we need (regression_length - 1) extra days of returns to compute our # expected regressions. columns = {'returns_5': returns_5, 'returns_10': returns_10} results = run_pipeline( Pipeline(columns=columns), dates[start_date_index - (regression_length - 1)], dates[end_date_index], ) returns_5_results = results['returns_5'].unstack() returns_10_results = results['returns_10'].unstack() # On each day, for each asset, calculate the expected regression # results of Y ~ X where Y is the asset's rolling 5 day returns and X # is the asset's rolling 10 day returns. Each regression is calculated # over `regression_length` days of data. for day in range(num_days): todays_returns_5 = returns_5_results.iloc[ day:day + regression_length ] todays_returns_10 = returns_10_results.iloc[ day:day + regression_length ] for asset, asset_returns_5 in todays_returns_5.iteritems(): asset_column = int(asset) - 1 asset_returns_10 = todays_returns_10[asset] expected_regression_results = linregress( y=asset_returns_5, x=asset_returns_10, ) for i, output in enumerate(outputs): expected_output_results[output][day, asset_column] = \ expected_regression_results[i] for output in outputs: output_result = output_results[output] expected_output_result = DataFrame( expected_output_results[output], index=dates[start_date_index:end_date_index + 1], columns=assets, ) assert_frame_equal(output_result, expected_output_result)
def test_factor_regression_method(self, returns_length, regression_length): """ Ensure that `Factor.linear_regression` is consistent with the built-in factor `RollingLinearRegressionOfReturns`. """ my_asset = self.asset_finder.retrieve_asset(self.sids[0]) returns = Returns(window_length=returns_length, inputs=[self.col]) returns_slice = returns[my_asset] regression = returns.linear_regression( target=returns_slice, regression_length=regression_length, ) expected_regression = RollingLinearRegressionOfReturns( target=my_asset, returns_length=returns_length, regression_length=regression_length, ) # These built-ins construct their own Returns factor to use as inputs, # so the only way to set our own inputs is to do so after the fact. # This should not be done in practice. It is necessary here because we # want Returns to use our random data as an input, but by default it is # using USEquityPricing.close. expected_regression.inputs = [returns, returns_slice] columns = { 'regression': regression, 'expected_regression': expected_regression, } results = self.run_pipeline( Pipeline(columns=columns), self.pipeline_start_date, self.pipeline_end_date, ) regression_results = results['regression'].unstack() expected_regression_results = results['expected_regression'].unstack() assert_frame_equal(regression_results, expected_regression_results) # Make sure we cannot call the linear regression method on factors or # slices of dtype `datetime64[ns]`. class DateFactor(CustomFactor): window_length = 1 inputs = [] dtype = datetime64ns_dtype window_safe = True def compute(self, today, assets, out): pass date_factor = DateFactor() date_factor_slice = date_factor[my_asset] with self.assertRaises(TypeError): date_factor.linear_regression( target=returns_slice, regression_length=regression_length, ) with self.assertRaises(TypeError): returns.linear_regression( target=date_factor_slice, regression_length=regression_length, )