コード例 #1
0
    def init_class_fixtures(cls):
        super(StatisticalMethodsTestCase, cls).init_class_fixtures()

        # Using these start and end dates because they are a contigous span of
        # 5 days (Monday - Friday) and they allow for plenty of days to look
        # back on when computing correlations and regressions.
        cls.dates = dates = cls.trading_days
        cls.start_date_index = start_date_index = 14
        cls.end_date_index = end_date_index = 18
        cls.pipeline_start_date = cls.trading_days[start_date_index]
        cls.pipeline_end_date = cls.trading_days[end_date_index]

        sids = cls.sids
        cls.assets = assets = cls.asset_finder.retrieve_all(sids)
        cls.my_asset_column = my_asset_column = 0
        cls.my_asset = assets[my_asset_column]
        cls.num_days = num_days = end_date_index - start_date_index + 1
        cls.num_assets = num_assets = len(assets)

        cls.cascading_mask = \
            AssetIDPlusDay() < (sids[-1] + dates[start_date_index].day)
        cls.expected_cascading_mask_result = make_cascading_boolean_array(
            shape=(num_days, num_assets),
        )
        cls.alternating_mask = (AssetIDPlusDay() % 2).eq(0)
        cls.expected_alternating_mask_result = make_alternating_boolean_array(
            shape=(num_days, num_assets),
        )
        cls.expected_no_mask_result = full(
            shape=(num_days, num_assets), fill_value=True, dtype=bool_dtype,
        )

        # Random input for factors.
        cls.col = TestingDataSet.float_col
コード例 #2
0
    def init_class_fixtures(cls):
        super(StatisticalBuiltInsTestCase, cls).init_class_fixtures()

        day = cls.trading_calendar.day
        cls.dates = dates = date_range(
            '2015-02-01', '2015-02-28', freq=day, tz='UTC',
        )

        # Using these start and end dates because they are a contigous span of
        # 5 days (Monday - Friday) and they allow for plenty of days to look
        # back on when computing correlations and regressions.
        cls.start_date_index = start_date_index = 14
        cls.end_date_index = end_date_index = 18
        cls.pipeline_start_date = dates[start_date_index]
        cls.pipeline_end_date = dates[end_date_index]
        cls.num_days = num_days = end_date_index - start_date_index + 1

        sids = cls.sids
        cls.assets = assets = cls.asset_finder.retrieve_all(sids)
        cls.my_asset_column = my_asset_column = 0
        cls.my_asset = assets[my_asset_column]
        cls.num_assets = num_assets = len(assets)

        cls.raw_data = raw_data = DataFrame(
            data=arange(len(dates) * len(sids), dtype=float64_dtype).reshape(
                len(dates), len(sids),
            ),
            index=dates,
            columns=assets,
        )

        # Using mock 'close' data here because the correlation and regression
        # built-ins use USEquityPricing.close as the input to their `Returns`
        # factors. Since there is no way to change that when constructing an
        # instance of these built-ins, we need to test with mock 'close' data
        # to most accurately reflect their true behavior and results.
        close_loader = DataFrameLoader(USEquityPricing.close, raw_data)

        cls.run_pipeline = SimplePipelineEngine(
            {USEquityPricing.close: close_loader}.__getitem__,
            dates,
            cls.asset_finder,
        ).run_pipeline

        cls.cascading_mask = \
            AssetIDPlusDay() < (sids[-1] + dates[start_date_index].day)
        cls.expected_cascading_mask_result = make_cascading_boolean_array(
            shape=(num_days, num_assets),
        )
        cls.alternating_mask = (AssetIDPlusDay() % 2).eq(0)
        cls.expected_alternating_mask_result = make_alternating_boolean_array(
            shape=(num_days, num_assets),
        )
        cls.expected_no_mask_result = full(
            shape=(num_days, num_assets), fill_value=True, dtype=bool_dtype,
        )
コード例 #3
0
    def _test_masked_single_column_output(self):
        """
        Tests for masking custom factors that compute a 1D out.
        """
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date

        alternating_mask = (AssetIDPlusDay() % 2).eq(0)
        cascading_mask = AssetIDPlusDay() < (self.sids[-1] + start_date.day)
        alternating_mask.window_safe = True
        cascading_mask.window_safe = True

        for mask in (alternating_mask, cascading_mask):
            class SingleColumnOutput(CustomFactor):
                window_length = 1
                inputs = [self.col, mask]
                window_safe = True
                ndim = 1

                def compute(self, today, assets, out, col, mask):
                    # Because we specified ndim as 1, `out` should always be a
                    # singleton array but `close` should be a sized based on
                    # the mask we passed.
                    assert out.shape == (1,)
                    assert col.shape == (1, mask.sum())
                    out[:] = col.sum()

            # Since we cannot add single column output factors as pipeline
            # columns, we have to test its output through another factor.
            class UsesSingleColumnInput(CustomFactor):
                window_length = 1
                inputs = [self.col, mask, SingleColumnOutput(mask=mask)]

                def compute(self,
                            today,
                            assets,
                            out,
                            col,
                            mask,
                            single_column_output):
                    # Make sure that `single_column` has the correct value
                    # based on the masked it used.
                    assert single_column_output.shape == (1, 1)
                    single_column_output_value = single_column_output[0][0]
                    expected_value = where(mask, col, 0).sum()
                    assert single_column_output_value == expected_value

            columns = {'uses_single_column_input': UsesSingleColumnInput()}

            # Assertions about the expected shapes of our data are made in the
            # `compute` function of our custom factors above.
            self.run_pipeline(Pipeline(columns=columns), start_date, end_date)
コード例 #4
0
ファイル: test_slice.py プロジェクト: ziptrade/catalyst
    def test_single_column_output(self):
        """
        Tests for custom factors that compute a 1D out.
        """
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date

        alternating_mask = (AssetIDPlusDay() % 2).eq(0)
        cascading_mask = AssetIDPlusDay() < (self.sids[-1] + start_date.day)

        class SingleColumnOutput(CustomFactor):
            window_length = 1
            inputs = [self.col]
            window_safe = True
            ndim = 1

            def compute(self, today, assets, out, col):
                # Because we specified ndim as 1, `out` should be a singleton
                # array but `close` should be a regular sized input.
                assert out.shape == (1, )
                assert col.shape == (1, 3)
                out[:] = col.sum()

        # Since we cannot add single column output factors as pipeline
        # columns, we have to test its output through another factor.
        class UsesSingleColumnOutput(CustomFactor):
            window_length = 1
            inputs = [SingleColumnOutput()]

            def compute(self, today, assets, out, single_column_output):
                # Make sure that `single_column` has the correct shape. That
                # is, it should always have one column regardless of any mask
                # passed to `UsesSingleColumnInput`.
                assert single_column_output.shape == (1, 1)

        for mask in (alternating_mask, cascading_mask):
            columns = {
                'uses_single_column_output':
                UsesSingleColumnOutput(),
                'uses_single_column_output_masked':
                UsesSingleColumnOutput(mask=mask, ),
            }

            # Assertions about the expected shapes of our data are made in the
            # `compute` function of our custom factors above.
            self.run_pipeline(Pipeline(columns=columns), start_date, end_date)