コード例 #1
0
ファイル: pruning.py プロジェクト: victorlazio109/catalyst
    def on_stage_end(self, runner: "IRunner") -> None:
        """
        On stage end action.

        Active if prune_on_stage_end or
        remove_reparametrization is True.

        Args:
            runner: runner for your experiment
        """
        if self.prune_on_stage_end:
            prune_model(
                model=runner.model,
                pruning_fn=self.pruning_fn,
                keys_to_prune=self.keys_to_prune,
                amount=self.amount,
                layers_to_prune=self.layers_to_prune,
                reinitialize_after_pruning=self.reinitialize_after_pruning,
            )
        if self.remove_reparametrization_on_stage_end:
            remove_reparametrization(
                model=runner.model,
                keys_to_prune=self.keys_to_prune,
                layers_to_prune=self.layers_to_prune,
            )
コード例 #2
0
ファイル: pruning.py プロジェクト: victorlazio109/catalyst
    def on_epoch_end(self, runner: "IRunner") -> None:
        """
        On epoch end action.

        Active if prune_on_epoch_end is True.

        Args:
            runner: runner for your experiment
        """
        if self.prune_on_epoch_end and runner.num_epochs != runner.epoch:
            prune_model(
                model=runner.model,
                pruning_fn=self.pruning_fn,
                keys_to_prune=self.keys_to_prune,
                amount=self.amount,
                layers_to_prune=self.layers_to_prune,
                reinitialize_after_pruning=self.reinitialize_after_pruning,
            )
コード例 #3
0
ファイル: test_mnist.py プロジェクト: poiug07/catalyst
def train_experiment(device, engine=None):
    with TemporaryDirectory() as logdir:
        model = nn.Sequential(nn.Flatten(), nn.Linear(28 * 28, 10))
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.Adam(model.parameters(), lr=0.02)

        loaders = {
            "train":
            DataLoader(MNIST(os.getcwd(),
                             train=False,
                             download=True,
                             transform=ToTensor()),
                       batch_size=32),
            "valid":
            DataLoader(MNIST(os.getcwd(),
                             train=False,
                             download=True,
                             transform=ToTensor()),
                       batch_size=32),
        }

        runner = dl.SupervisedRunner(input_key="features",
                                     output_key="logits",
                                     target_key="targets",
                                     loss_key="loss")
        callbacks = [
            dl.AccuracyCallback(input_key="logits",
                                target_key="targets",
                                topk_args=(1, 3, 5)),
            dl.PrecisionRecallF1SupportCallback(input_key="logits",
                                                target_key="targets",
                                                num_classes=10),
        ]
        if SETTINGS.ml_required:
            callbacks.append(
                dl.ConfusionMatrixCallback(input_key="logits",
                                           target_key="targets",
                                           num_classes=10))
        if SETTINGS.amp_required and (engine is None or not isinstance(
                engine,
            (dl.AMPEngine, dl.DataParallelAMPEngine,
             dl.DistributedDataParallelAMPEngine),
        )):
            callbacks.append(
                dl.AUCCallback(input_key="logits", target_key="targets"))
        if SETTINGS.onnx_required:
            callbacks.append(
                dl.OnnxCallback(logdir=logdir, input_key="features"))
        if SETTINGS.pruning_required:
            callbacks.append(
                dl.PruningCallback(pruning_fn="l1_unstructured", amount=0.5))
        if SETTINGS.quantization_required:
            callbacks.append(dl.QuantizationCallback(logdir=logdir))
        if engine is None or not isinstance(engine,
                                            dl.DistributedDataParallelEngine):
            callbacks.append(
                dl.TracingCallback(logdir=logdir, input_key="features"))
        # model training
        runner.train(
            engine=engine or dl.DeviceEngine(device),
            model=model,
            criterion=criterion,
            optimizer=optimizer,
            loaders=loaders,
            num_epochs=1,
            callbacks=callbacks,
            logdir=logdir,
            valid_loader="valid",
            valid_metric="loss",
            minimize_valid_metric=True,
            verbose=False,
            load_best_on_end=True,
            timeit=False,
            check=False,
            overfit=False,
            fp16=False,
            ddp=False,
        )
        # model inference
        for prediction in runner.predict_loader(loader=loaders["valid"]):
            assert prediction["logits"].detach().cpu().numpy().shape[-1] == 10
        # model post-processing
        features_batch = next(iter(loaders["valid"]))[0]
        # model stochastic weight averaging
        model.load_state_dict(
            utils.get_averaged_weights_by_path_mask(logdir=logdir,
                                                    path_mask="*.pth"))
        # model onnx export
        if SETTINGS.onnx_required:
            utils.onnx_export(
                model=runner.model,
                batch=runner.engine.sync_device(features_batch),
                file="./mnist.onnx",
                verbose=False,
            )
        # model quantization
        if SETTINGS.quantization_required:
            utils.quantize_model(model=runner.model)
        # model pruning
        if SETTINGS.pruning_required:
            utils.prune_model(model=runner.model,
                              pruning_fn="l1_unstructured",
                              amount=0.8)
        # model tracing
        utils.trace_model(model=runner.model, batch=features_batch)