コード例 #1
0
 def test_cancel(self):
     m = ConsoleMonitor()
     with fetch_std_streams():
         m.start('task A', total_work=10)
         self.assertFalse(m.is_cancelled())
         m.cancel()
         self.assertTrue(m.is_cancelled())
コード例 #2
0
ファイル: test_aggregate.py プロジェクト: glsaltfish/cate
    def test_8days(self):
        """
        Test nominal execution with a 8 Days frequency input dataset
        """
        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 46])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 46])),
            'lat':
            np.linspace(-88, 88, 45),
            'lon':
            np.linspace(-178, 178, 90),
            'time':
            pd.date_range('2000-01-01', '2000-12-31', freq='8D')
        })
        ds = adjust_temporal_attrs(ds)

        ex = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'lat':
            np.linspace(-88, 88, 45),
            'lon':
            np.linspace(-178, 178, 90),
            'time':
            pd.date_range('2000-01-01', freq='MS', periods=12)
        })
        ex.first.attrs['cell_methods'] = 'time: mean within years'
        ex.second.attrs['cell_methods'] = 'time: mean within years'

        m = ConsoleMonitor()
        actual = temporal_aggregation(ds, monitor=m)

        self.assertTrue(actual.broadcast_equals(ex))
コード例 #3
0
    def test_nominal(self):
        """
        Test nominal execution
        """
        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 366])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 366])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', '2000-12-31')})
        ds = adjust_temporal_attrs(ds)

        ex = xr.Dataset({
            'first': (['lat', 'lon'], np.ones([45, 90])),
            'second': (['lat', 'lon'], np.ones([45, 90])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', '2000-12-31')})

        m = ConsoleMonitor()
        actual = reduce(ds, monitor=m)

        self.assertTrue(actual.broadcast_equals(ex))

        actual = reduce(ds, dim=['lat', 'time', 'there_is_no_spoon'], monitor=m)
        ex = xr.Dataset({
            'first': (['lon'], np.ones([90])),
            'second': (['lon'], np.ones([90])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', '2000-12-31')})

        self.assertTrue(actual.broadcast_equals(ex))
コード例 #4
0
    def test_nominal(self):
        """
        Test nominal execution
        """
        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 24])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 24])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', freq='MS', periods=24)})

        ds = adjust_temporal_attrs(ds)

        # Test monitor
        m = ConsoleMonitor()
        actual = long_term_average(ds, monitor=m)
        self.assertEqual(m._percentage, 100)

        # Test CF attributes
        self.assertEqual(actual['first'].attrs['cell_methods'],
                         'time: mean over years')
        self.assertEqual(actual.dims, {'time': 12,
                                       'nv': 2,
                                       'lat': 45,
                                       'lon': 90})
        self.assertEqual(actual.time.attrs['climatology'],
                         'climatology_bounds')

        # Test variable selection
        actual = long_term_average(ds, var='first')
        with self.assertRaises(KeyError):
            actual['second']
コード例 #5
0
ファイル: test_anomaly.py プロジェクト: TonioF/cate
    def test_monitor(self):
        """
        Test monitor integration
        """
        ref = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'lat':
            np.linspace(-88, 88, 45),
            'lon':
            np.linspace(-178, 178, 90)
        })

        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 24])),
            'lat':
            np.linspace(-88, 88, 45),
            'lon':
            np.linspace(-178, 178, 90),
            'time': [datetime(2000, x, 1) for x in range(1, 13)] +
            [datetime(2001, x, 1) for x in range(1, 13)]
        })

        with create_tmp_file() as tmp_file:
            ref.to_netcdf(tmp_file, 'w')
            m = ConsoleMonitor()
            anomaly.anomaly_external(ds, tmp_file, monitor=m)
            self.assertEqual(m._percentage, 100)
コード例 #6
0
    def test_seasonal(self):
        """
        Test aggregation to a seasonal dataset
        """
        # daily -> seasonal
        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 366])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 366])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', '2000-12-31')})
        ds = adjust_temporal_attrs(ds)

        ex = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 5])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 5])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('1999-12-01', freq='QS-DEC', periods=5)})
        ex.first.attrs['cell_methods'] = 'time: mean within years'
        ex.second.attrs['cell_methods'] = 'time: mean within years'
        m = ConsoleMonitor()
        actual = temporal_aggregation(ds, output_resolution='season', monitor=m)
        self.assertTrue(actual.broadcast_equals(ex))

        # monthly -> seasonal
        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', freq='MS', periods=12)})
        ds = adjust_temporal_attrs(ds)
        actual = temporal_aggregation(ds, output_resolution='season', monitor=m)
        self.assertTrue(actual.broadcast_equals(ex))
コード例 #7
0
ファイル: test_monitor.py プロジェクト: CCI-Tools/ect-core
 def test_cancel(self):
     m = ConsoleMonitor()
     with fetch_std_streams():
         m.start('task A', total_work=10)
         self.assertFalse(m.is_cancelled())
         m.cancel()
         self.assertTrue(m.is_cancelled())
コード例 #8
0
    def test_custom(self):
        """
        Test aggergating to custom temporal resolutions
        """
        # daily -> 8 days
        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 366])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 366])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', '2000-12-31')})
        ds = adjust_temporal_attrs(ds)

        ex = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 46])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 46])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', '2000-12-31', freq='8D')})
        ex.first.attrs['cell_methods'] = 'time: mean within years'
        ex.second.attrs['cell_methods'] = 'time: mean within years'
        m = ConsoleMonitor()
        actual = temporal_aggregation(ds, custom_resolution='8D', monitor=m)
        self.assertTrue(actual.broadcast_equals(ex))

        # daily -> weekly
        ex = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 53])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 53])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', '2000-12-31', freq='W')})
        ex.first.attrs['cell_methods'] = 'time: mean within years'
        ex.second.attrs['cell_methods'] = 'time: mean within years'
        actual = temporal_aggregation(ds, custom_resolution='W', monitor=m)
        self.assertTrue(actual.broadcast_equals(ex))

        # monthly -> 4 month seasons
        ds = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 12])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', freq='MS', periods=12)})
        ds = adjust_temporal_attrs(ds)
        ex = xr.Dataset({
            'first': (['lat', 'lon', 'time'], np.ones([45, 90, 4])),
            'second': (['lat', 'lon', 'time'], np.ones([45, 90, 4])),
            'lat': np.linspace(-88, 88, 45),
            'lon': np.linspace(-178, 178, 90),
            'time': pd.date_range('2000-01-01', freq='4M', periods=4)})
        ex.first.attrs['cell_methods'] = 'time: mean within years'
        ex.second.attrs['cell_methods'] = 'time: mean within years'
        actual = temporal_aggregation(ds, custom_resolution='4M', monitor=m)
        print(actual)
        self.assertTrue(actual.broadcast_equals(ex))
コード例 #9
0
 def test_child_monitor(self):
     monitor = ConsoleMonitor()
     child_monitor = monitor.child(work=7.5)
     self.assertIsInstance(child_monitor, ChildMonitor)
コード例 #10
0
 def test_label_required(self):
     monitor = ConsoleMonitor()
     with fetch_std_streams():
         with self.assertRaises(ValueError):
             # "ValueError: label must be given"
             monitor.start('', total_work=10)
コード例 #11
0
    def test_console_monitor_with_progress_bar(self):
        m = ConsoleMonitor(progress_bar_size=10)
        with fetch_std_streams() as (stdout, stderr):
            m.start('task A', total_work=10)
            m.progress(work=1)
            m.progress(work=5, msg='phase 1')
            m.progress(msg='phase 2')
            m.progress(work=4)
            m.progress()
            m.done()
        actual_stdout = stdout.getvalue()
        expected_stdout = 'task A: started\n' + \
                          'task A: [#---------]  10% \n' + \
                          'task A: [######----]  60% phase 1\n' + \
                          'task A: phase 2\n' + \
                          'task A: [##########] 100% \n' + \
                          'task A: in progress...\n' + \
                          'task A: done\n'

        self.assertEqual(actual_stdout, expected_stdout)
        self.assertEqual(stderr.getvalue(), '')
コード例 #12
0
ファイル: test_monitor.py プロジェクト: CCI-Tools/ect-core
 def test_child_monitor(self):
     monitor = ConsoleMonitor()
     child_monitor = monitor.child(work=7.5)
     self.assertIsInstance(child_monitor, ChildMonitor)
コード例 #13
0
ファイル: test_monitor.py プロジェクト: CCI-Tools/ect-core
 def test_label_required(self):
     monitor = ConsoleMonitor()
     with fetch_std_streams():
         with self.assertRaises(ValueError):
             # "ValueError: label must be given"
             monitor.start('', total_work=10)
コード例 #14
0
ファイル: test_monitor.py プロジェクト: CCI-Tools/ect-core
    def test_console_monitor_with_progress_bar(self):
        m = ConsoleMonitor(progress_bar_size=10)
        with fetch_std_streams() as (stdout, stderr):
            m.start('task A', total_work=10)
            m.progress(work=1)
            m.progress(work=5, msg='phase 1')
            m.progress(msg='phase 2')
            m.progress(work=4)
            m.progress()
            m.done()
        actual_stdout = stdout.getvalue()
        expected_stdout = 'task A: started\n' + \
                          'task A: [#---------]  10% \n' + \
                          'task A: [######----]  60% phase 1\n' + \
                          'task A: phase 2\n' + \
                          'task A: [##########] 100% \n' + \
                          'task A: in progress...\n' + \
                          'task A: done\n'

        self.assertEqual(actual_stdout, expected_stdout)
        self.assertEqual(stderr.getvalue(), '')
コード例 #15
0
ファイル: test_monitor.py プロジェクト: acorlyon/cate-core
    def test_console_monitor(self):
        m = ConsoleMonitor()
        with fetch_std_streams() as (stdout, stderr):
            m.start('task A', total_work=10)
            m.progress(work=1)
            m.progress(work=5, msg='phase 1')
            m.progress(msg='phase 2')
            m.progress(work=4)
            m.progress()
            m.done()
        actual_stdout = stdout.getvalue()
        expected_stdout = 'task A: started\n' + \
                          'task A:  10%\n' + \
                          'task A:  60% phase 1\n' + \
                          'task A: phase 2\n' + \
                          'task A: 100%\n' + \
                          'task A: progress\n' + \
                          'task A: done\n'

        self.assertEqual(actual_stdout, expected_stdout)
        self.assertEqual(stderr.getvalue(), '')
        self.assertTrue(True)