def _do_json_rpc(web_socket, rpc_request: dict, monitor: Monitor) -> dict: web_socket.write_message(json.dumps(rpc_request)) work_reported = None started = False while True and (monitor is None or not monitor.is_cancelled()): response_str = yield web_socket.read_message() rpc_response = json.loads(response_str) if 'progress' in rpc_response: if monitor: progress = rpc_response['progress'] total = progress.get('total') label = progress.get('label') worked = progress.get('worked') msg = progress.get('message') if not started: monitor.start(label or "start", total_work=total) started = True if started: if worked: if work_reported is None: work_reported = 0.0 work = worked - work_reported work_reported = worked else: work = None monitor.progress(work=work, msg=msg) else: if monitor and started: monitor.done() return rpc_response return {}
def no_op(num_steps: int = 20, step_duration: float = 0.5, fail_before: bool = False, fail_after: bool = False, error_type: str = 'Value', monitor: Monitor = Monitor.NONE) -> bool: """ An operation that basically does nothing but spending configurable time. It may be useful for testing purposes. :param num_steps: Number of steps to iterate. :param step_duration: How much time to spend in each step in seconds. :param fail_before: If the operation should fail before spending time doing nothing (raise a ValidationError). :param fail_after: If the operation should fail after spending time doing nothing (raise a ValueError). :param error_type: The type of error to raise. :param monitor: A progress monitor. :return: Always True """ import time with monitor.starting('Computing nothing', num_steps): if fail_before: error_class = _ERROR_TYPES[error_type] raise error_class(f'This is a test: intentionally failed with a {error_type} error' f' before {num_steps} times doing anything.') for i in range(num_steps): time.sleep(step_duration) monitor.progress(1.0, 'Step %s of %s doing nothing' % (i + 1, num_steps)) if fail_after: error_class = _ERROR_TYPES[error_type] raise error_class(f'Intentionally failed failed with a {error_type} error' f' after {num_steps} times doing nothing.') return True
def no_op(num_steps: int = 20, step_duration: float = 0.5, fail_before: bool = False, fail_after: bool = False, error_type: str = 'Value', monitor: Monitor = Monitor.NONE) -> bool: """ An operation that basically does nothing but spending configurable time. It may be useful for testing purposes. :param num_steps: Number of steps to iterate. :param step_duration: How much time to spend in each step in seconds. :param fail_before: If the operation should fail before spending time doing nothing (raise a ValidationError). :param fail_after: If the operation should fail after spending time doing nothing (raise a ValueError). :param error_type: The type of error to raise. :param monitor: A progress monitor. :return: Always True """ import time with monitor.starting('Computing nothing', num_steps): if fail_before: error_class = _ERROR_TYPES[error_type] raise error_class( f'This is a test: intentionally failed with a {error_type} error' f' before {num_steps} times doing anything.') for i in range(num_steps): time.sleep(step_duration) monitor.progress( 1.0, 'Step %s of %s doing nothing' % (i + 1, num_steps)) if fail_after: error_class = _ERROR_TYPES[error_type] raise error_class( f'Intentionally failed failed with a {error_type} error' f' after {num_steps} times doing nothing.') return True
def no_op(num_steps: int = 10, step_duration: float = 0.5, fail_before: bool = False, fail_after: bool = False, monitor: Monitor = Monitor.NONE) -> bool: """ An operation that basically does nothing but spending configurable time. It may be useful for testing purposes. :param num_steps: Number of steps to iterate. :param step_duration: How much time to spend in each step in seconds. :param fail_before: If the operation should fail before spending time doing nothing. :param fail_after: If the operation should fail after spending time doing nothing. :param monitor: A progress monitor. :return: Always True """ import time monitor.start('Computing nothing', num_steps) if fail_before: raise ValueError('Intentionally failed before doing anything.') for i in range(num_steps): time.sleep(step_duration) monitor.progress(1.0, 'Step %s of %s doing nothing' % (i + 1, num_steps)) if fail_after: raise ValueError('Intentionally failed after doing nothing.') monitor.done() return True
def _sync_files(self, ftp, ftp_base_dir, expected_remote_files, num_of_expected_remote_files, monitor: Monitor) -> int: sync_files_number = 0 checked_files_number = 0 files_to_download = OrderedDict() file_set_size = 0 for expected_dir_path, expected_filename_dict in expected_remote_files.items(): if monitor.is_cancelled(): raise Cancellation() ftp_dir = ftp_base_dir + '/' + expected_dir_path try: ftp.cwd(ftp_dir) except ftplib.Error: # Note: If we can't CWD to ftp_dir, this usually means, # expected_dir_path may refer to a time range that is not covered remotely. monitor.progress(work=1) continue try: remote_dir_content = ftp.mlsd(facts=['type', 'size', 'modify']) except ftplib.Error: # Note: If we can't MLSD the CWD ftp_dir, we have a problem. monitor.progress(work=1) continue for existing_filename, facts in remote_dir_content: if monitor.is_cancelled(): raise Cancellation() if facts.get('type', None) == 'file' and existing_filename in expected_filename_dict: # update expected_filename_dict with facts of existing_filename expected_filename_dict[existing_filename] = facts file_size = int(facts.get('size', '-1')) if file_size > 0: file_set_size += file_size # TODO (forman, 20160619): put also 'modify' in file_info, to update outdated local files existing_file_info = dict(size=file_size, path=expected_dir_path) files_to_download[existing_filename] = existing_file_info last_cwd = None if files_to_download: dl_stat = _DownloadStatistics(file_set_size) for existing_filename, existing_file_info in files_to_download.items(): checked_files_number += 1 child_monitor = monitor.child(work=1.) if monitor.is_cancelled(): raise Cancellation() if last_cwd is not existing_file_info['path']: ftp.cwd(ftp_base_dir + '/' + existing_file_info['path']) last_cwd = existing_file_info['path'] downloader = FtpDownloader(ftp, existing_filename, existing_file_info, self._file_set_data_store.root_dir, (checked_files_number, num_of_expected_remote_files), child_monitor, dl_stat) result = downloader.start() if DownloadStatus.SUCCESS is result: sync_files_number += 1 return sync_files_number
def anomaly_external(ds: xr.Dataset, file: str, transform: str = None, monitor: Monitor = Monitor.NONE) -> xr.Dataset: """ Calculate anomaly with external reference data, for example, a climatology. The given reference dataset is expected to consist of 12 time slices, one for each month. The returned dataset will contain the variable names found in both - the reference and the given dataset. Names found in the given dataset, but not in the reference, will be dropped from the resulting dataset. The calculated anomaly will be against the corresponding month of the reference data. E.g. January against January, etc. In case spatial extents differ between the reference and the given dataset, the anomaly will be calculated on the intersection. :param ds: The dataset to calculate anomalies from :param file: Path to reference data file :param transform: Apply the given transformation before calculating the anomaly. For supported operations see help on 'ds_arithmetics' operation. :param monitor: a progress monitor. :return: The anomaly dataset """ # Check if the time coordinate is of dtype datetime try: if ds.time.dtype != 'datetime64[ns]': raise ValidationError( 'The dataset provided for anomaly calculation' ' is required to have a time coordinate of' ' dtype datetime64[ns]. Running the normalize' ' operation on this dataset might help.') except AttributeError: raise ValidationError('The dataset provided for anomaly calculation' ' is required to have a time coordinate.') clim = xr.open_dataset(file) ret = ds.copy() if transform: ret = ds_arithmetics(ds, transform) # Group by months, subtract the appropriate slice from the reference # Note that this requires that 'time' coordinate labels are of type # datetime64[ns] total_work = 100 step = 100 / 12 with monitor.starting('Anomaly', total_work=total_work): monitor.progress(work=0) kwargs = {'ref': clim, 'monitor': monitor, 'step': step} ret = ret.groupby(ds['time.month']).apply(_group_anomaly, **kwargs) # Running groupby results in a redundant 'month' variable being added to # the dataset ret = ret.drop('month') return ret
def _lta_daily(ds: xr.Dataset, monitor: Monitor): """ Carry out a long term average of a daily dataset :param ds: Dataset to aggregate :param monitor: Progress monitor :return: Aggregated dataset """ time_min = pd.Timestamp(ds.time.values[0]) time_max = pd.Timestamp(ds.time.values[-1]) total_work = 100 retset = ds with monitor.starting('LTA', total_work=total_work): monitor.progress(work=0) step = total_work / 366 kwargs = {'monitor': monitor, 'step': step} retset = retset.groupby('time.month', squeeze=False).apply(_groupby_day, **kwargs) # Make the return dataset CF compliant retset = retset.stack(time=('month', 'day')) # Get rid of redundant dates drop = [(2, 29), (2, 30), (2, 31), (4, 31), (6, 31), (9, 31), (11, 31)] retset = retset.drop(drop, dim='time') # Turn month, day coordinates to time retset = retset.reset_index('time') retset = retset.drop(['month', 'day']) time_coord = pd.date_range(start='{}-01-01'.format(time_min.year), end='{}-12-31'.format(time_min.year), freq='D') if len(time_coord) == 366: time_coord = time_coord.drop( np.datetime64('{}-02-29'.format(time_min.year))) retset['time'] = time_coord climatology_bounds = xr.DataArray(data=np.tile([time_min, time_max], (365, 1)), dims=['time', 'nv'], name='climatology_bounds') retset['climatology_bounds'] = climatology_bounds retset.time.attrs = ds.time.attrs retset.time.attrs['climatology'] = 'climatology_bounds' for var in retset.data_vars: try: retset[var].attrs['cell_methods'] = \ retset[var].attrs['cell_methods'] + ' time: mean over years' except KeyError: retset[var].attrs['cell_methods'] = 'time: mean over years' return retset
def _mean(ds: xr.Dataset, monitor: Monitor, step: float): """ Calculate mean of the given dataset and update the given monitor. :param ds: Dataset to take the mean of :param monitor: Monitor to update :param step: Work step """ retset = ds.mean(dim='time', keep_attrs=True) monitor.progress(work=step) return retset
def _lta_daily(ds: xr.Dataset, monitor: Monitor): """ Carry out a long term average of a daily dataset :param ds: Dataset to aggregate :param monitor: Progress monitor :return: Aggregated dataset """ time_min = pd.Timestamp(ds.time.values[0], tzinfo=timezone.utc) time_max = pd.Timestamp(ds.time.values[-1], tzinfo=timezone.utc) total_work = 100 retset = ds with monitor.starting('LTA', total_work=total_work): monitor.progress(work=0) step = total_work / 366 kwargs = {'monitor': monitor, 'step': step} retset = retset.groupby('time.month', squeeze=False).apply(_groupby_day, **kwargs) # Make the return dataset CF compliant retset = retset.stack(time=('month', 'day')) # Get rid of redundant dates drop = [(2, 29), (2, 30), (2, 31), (4, 31), (6, 31), (9, 31), (11, 31)] retset = retset.drop(drop, dim='time') # Turn month, day coordinates to time retset = retset.reset_index('time') retset = retset.drop(['month', 'day']) time_coord = pd.date_range(start='{}-01-01'.format(time_min.year), end='{}-12-31'.format(time_min.year), freq='D') if len(time_coord) == 366: time_coord = time_coord.drop(np.datetime64('{}-02-29'.format(time_min.year))) retset['time'] = time_coord climatology_bounds = xr.DataArray(data=np.tile([time_min, time_max], (365, 1)), dims=['time', 'nv'], name='climatology_bounds') retset['climatology_bounds'] = climatology_bounds retset.time.attrs = ds.time.attrs retset.time.attrs['climatology'] = 'climatology_bounds' for var in retset.data_vars: try: retset[var].attrs['cell_methods'] = \ retset[var].attrs['cell_methods'] + ' time: mean over years' except KeyError: retset[var].attrs['cell_methods'] = 'time: mean over years' return retset
def update_indices(self, update_file_lists: bool = False, monitor: Monitor = Monitor.NONE): with monitor.starting('Updating indices', 100): self._init_data_sources() monitor.progress(work=10 if update_file_lists else 100) if update_file_lists: child_monitor = monitor.child(work=90) with child_monitor.starting('Updating file lists', len(self._data_sources)): for data_source in self._data_sources: data_source.update_file_list() child_monitor.progress(work=1)
def reduce(ds: DatasetLike.TYPE, var: VarNamesLike.TYPE = None, dim: DimNamesLike.TYPE = None, method: str = 'mean', monitor: Monitor = Monitor.NONE) -> xr.Dataset: """ Reduce the given variables of the given dataset along the given dimensions. If no variables are given, all variables of the dataset will be reduced. If no dimensions are given, all dimensions will be reduced. If no variables have been given explicitly, it can be set that only variables featuring numeric values should be reduced. :param ds: Dataset to reduce :param var: Variables in the dataset to reduce :param dim: Dataset dimensions along which to reduce :param method: reduction method :param monitor: A progress monitor """ ufuncs = { 'min': np.nanmin, 'max': np.nanmax, 'mean': np.nanmean, 'median': np.nanmedian, 'sum': np.nansum } ds = DatasetLike.convert(ds) if not var: var = list(ds.data_vars.keys()) var_names = VarNamesLike.convert(var) if not dim: dim = list(ds.coords.keys()) else: dim = DimNamesLike.convert(dim) retset = ds.copy() for var_name in var_names: intersection = [ value for value in dim if value in retset[var_name].dims ] with monitor.starting("Reduce dataset", total_work=100): monitor.progress(5) with monitor.child(95).observing("Reduce"): retset[var_name] = retset[var_name].reduce(ufuncs[method], dim=intersection, keep_attrs=True) return retset
def _build_catalogue(self, monitor: Monitor = Monitor.NONE): self._catalogue = {} catalogue_metadata = {} start_position = 0 max_records = _CSW_MAX_RESULTS matches = -1 while True: # fetch record metadata self._catalogue_service.getrecords2(esn='full', outputschema=self._namespaces.get_namespace('gmd'), startposition=start_position, maxrecords=max_records) if matches == -1: # set counters, start progress monitor matches = self._catalogue_service.results.get('matches') if matches == 0: break monitor.start(label="Fetching catalogue data... (%d records)" % matches, total_work=ceil(matches / max_records)) catalogue_metadata.update(self._catalogue_service.records) monitor.progress(work=1) # bump counters start_position += max_records if start_position > matches: break self._catalogue = { record.identification.uricode[0]: { 'abstract': record.identification.abstract, 'bbox_minx': record.identification.bbox.minx if record.identification.bbox else None, 'bbox_miny': record.identification.bbox.miny if record.identification.bbox else None, 'bbox_maxx': record.identification.bbox.maxx if record.identification.bbox else None, 'bbox_maxy': record.identification.bbox.maxy if record.identification.bbox else None, 'creation_date': next(iter(e.date for e in record.identification.date if e and e.type == 'creation'), None), 'publication_date': next(iter(e.date for e in record.identification.date if e and e.type == 'publication'), None), 'title': record.identification.title, 'data_sources': record.identification.uricode[1:], 'licences': record.identification.uselimitation, 'temporal_coverage_start': record.identification.temporalextent_start, 'temporal_coverage_end': record.identification.temporalextent_end } for record in catalogue_metadata.values() if record.identification and len(record.identification.uricode) > 0 } monitor.done()
def _fetch_solr_json(base_url, query_args, offset=0, limit=3500, timeout=10, monitor: Monitor = Monitor.NONE): """ Return JSON value read from paginated Solr web-service. """ combined_json_dict = None num_found = -1 # we don't know ahead of time how much request are necessary with monitor.starting("Loading", 10): while True: monitor.progress(work=1) paging_query_args = dict(query_args or {}) # noinspection PyArgumentList paging_query_args.update(offset=offset, limit=limit, format='application/solr+json') url = base_url + '?' + urllib.parse.urlencode(paging_query_args) try: with urllib.request.urlopen(url, timeout=timeout) as response: json_text = response.read() json_dict = json.loads(json_text.decode('utf-8')) if num_found is -1: num_found = json_dict.get('response', {}).get('numFound', 0) if not combined_json_dict: combined_json_dict = json_dict if num_found < limit: break else: docs = json_dict.get('response', {}).get('docs', []) combined_json_dict.get('response', {}).get('docs', []).extend(docs) if num_found < offset + limit: break except (urllib.error.HTTPError, urllib.error.URLError) as e: raise DataAccessError( "Downloading CCI Open Data Portal index failed: {}\n{}". format(e, base_url)) from e except socket.timeout: raise DataAccessError( "Downloading CCI Open Data Portal index failed: connection timeout\n{}" .format(base_url)) offset += limit return combined_json_dict
def _group_anomaly(group: xr.Dataset, ref: xr.Dataset, monitor: Monitor = Monitor.NONE, step: float = None): """ Calculate anomaly for the given group. :param group: Result of a groupby('time.month') operation :param ref: Reference dataset :param monitor: Monitor of the parent method :param step: Step to add to monitor progress :return: Group dataset with anomaly calculation applied """ # Retrieve the month of the current group month = group['time.month'][0].values ret = diff(group, ref.isel(time=month - 1)) monitor.progress(work=step) return ret
def reduce(ds: DatasetLike.TYPE, var: VarNamesLike.TYPE = None, dim: DimNamesLike.TYPE = None, method: str = 'mean', monitor: Monitor = Monitor.NONE) -> xr.Dataset: """ Reduce the given variables of the given dataset along the given dimensions. If no variables are given, all variables of the dataset will be reduced. If no dimensions are given, all dimensions will be reduced. If no variables have been given explicitly, it can be set that only variables featuring numeric values should be reduced. :param ds: Dataset to reduce :param var: Variables in the dataset to reduce :param dim: Dataset dimensions along which to reduce :param method: reduction method :param monitor: A progress monitor """ ufuncs = {'min': np.nanmin, 'max': np.nanmax, 'mean': np.nanmean, 'median': np.nanmedian, 'sum': np.nansum} ds = DatasetLike.convert(ds) if not var: var = list(ds.data_vars.keys()) var_names = VarNamesLike.convert(var) if not dim: dim = list(ds.coords.keys()) else: dim = DimNamesLike.convert(dim) retset = ds.copy() for var_name in var_names: intersection = [value for value in dim if value in retset[var_name].dims] with monitor.starting("Reduce dataset", total_work=100): monitor.progress(5) with monitor.child(95).observing("Reduce"): retset[var_name] = retset[var_name].reduce(ufuncs[method], dim=intersection, keep_attrs=True) return retset
def _lta_monthly(ds: xr.Dataset, monitor: Monitor): """ Carry out a long term average on a monthly dataset :param ds: Dataset to aggregate :param monitor: Progress monitor :return: Aggregated dataset """ time_min = pd.Timestamp(ds.time.values[0], tzinfo=timezone.utc) time_max = pd.Timestamp(ds.time.values[-1], tzinfo=timezone.utc) total_work = 100 retset = ds with monitor.starting('LTA', total_work=total_work): monitor.progress(work=0) step = total_work / 12 kwargs = {'monitor': monitor, 'step': step} retset = retset.groupby('time.month', squeeze=False).apply(_mean, **kwargs) # Make the return dataset CF compliant retset = retset.rename({'month': 'time'}) retset['time'] = pd.date_range('{}-01-01'.format(time_min.year), freq='MS', periods=12) climatology_bounds = xr.DataArray(data=np.tile([time_min, time_max], (12, 1)), dims=['time', 'nv'], name='climatology_bounds') retset['climatology_bounds'] = climatology_bounds retset.time.attrs = ds.time.attrs retset.time.attrs['climatology'] = 'climatology_bounds' for var in retset.data_vars: try: retset[var].attrs['cell_methods'] = \ retset[var].attrs['cell_methods'] + ' time: mean over years' except KeyError: retset[var].attrs['cell_methods'] = 'time: mean over years' return retset
def _fetch_solr_json(base_url, query_args, offset=0, limit=3500, timeout=10, monitor: Monitor = Monitor.NONE): """ Return JSON value read from paginated Solr web-service. """ combined_json_dict = None num_found = -1 # we don't know ahead of time how much request are necessary with monitor.starting("Loading", 10): while True: monitor.progress(work=1) if monitor.is_cancelled(): raise InterruptedError paging_query_args = dict(query_args or {}) paging_query_args.update(offset=offset, limit=limit, format='application/solr+json') url = base_url + '?' + urllib.parse.urlencode(paging_query_args) with urllib.request.urlopen(url, timeout=timeout) as response: json_text = response.read() json_dict = json.loads(json_text.decode('utf-8')) if num_found is -1: num_found = json_dict.get('response', {}).get('numFound', 0) if not combined_json_dict: combined_json_dict = json_dict if num_found < limit: break else: docs = json_dict.get('response', {}).get('docs', []) combined_json_dict.get('response', {}).get('docs', []).extend(docs) if num_found < offset + limit: break offset += limit return combined_json_dict
def long_term_average(source: str, year_min: int, year_max: int, file: str, var: VarNamesLike.TYPE = None, save: bool = False, monitor: Monitor = Monitor.NONE) -> xr.Dataset: """ Perform the long term monthly average of the given monthly or daily data source for the given range of years. Depending on the given year range, data size, as well as internet connection quality, this operation can potentially take a very long time to finish. Careful consideration is needed in choosing the var parameter to create meaningful outputs. This is unique for each data source. :param source: The data source from which to extract the monthly average :param year_min: The earliest year of the desired time range :param year_max: The most recent year of the desired time range :param file: filepath where to save the long term average dataset :param var: If given, only these variable names will be preserved in the output. :param save: If True, saves the data downloaded during this operation. This can potentially be a very large amount of data. :param monitor: A progress monitor to use :return: The Long Term Average dataset. """ var = VarNamesLike.convert(var) n_years = year_max - year_min + 1 res = 0 total_work = 100 # Select the appropriate data source data_store_list = DATA_STORE_REGISTRY.get_data_stores() data_sources = query_data_sources(data_store_list, name=source) if len(data_sources) == 0: raise ValueError("No data_source found for the given query\ term {}".format(source)) elif len(data_sources) > 1: raise ValueError("{} data_sources found for the given query\ term {}".format(data_sources, source)) data_source = data_sources[0] source_info = data_source.cache_info # Check if we have a monthly data source fq = data_source.meta_info['time_frequency'] if fq != 'mon': raise ValueError("Only monthly datasets are supported for time being.") with monitor.starting('LTA', total_work=total_work): # Set up the monitor monitor.progress(work=0) step = total_work * 0.9 / n_years # Process the data source year by year year = year_min while year != year_max + 1: tmin = "{}-01-01".format(year) tmax = "{}-12-31".format(year) # Determine if the data for the given year are already downloaded # If at least one file of the given time range is present, we # don't delete the data for this year, we do the syncing anyway. was_already_downloaded = False dt_range = to_datetime_range(tmin, tmax) for date in source_info: if dt_range[0] <= date <= dt_range[1]: was_already_downloaded = True # One is enough break worked = monitor._worked data_source.sync(dt_range, monitor=monitor.child(work=step * 0.9)) if worked == monitor._worked: monitor.progress(work=step * 0.9) ds = data_source.open_dataset(dt_range) # Filter the dataset ds = select_var(ds, var) try: if res == 0: res = ds / n_years else: # Xarray doesn't do automatic alignment for in place # operations, hence we have to do it manually res = res + ds.reindex_like(res) / n_years except TypeError: raise TypeError('One or more data arrays feature a dtype that\ can not be divided. Consider using the var\ parameter to filter the dataset.') ds.close() # delete data for the current year, if it should be deleted and it # was not already downloaded. if (not save) and (not was_already_downloaded): data_source.delete_local(dt_range) monitor.progress(work=step * 0.1) year = year + 1 monitor.progress(msg='Saving the LTA dataset') save_dataset(res, file) monitor.progress(total_work * 0.1) return res
def write_csv(obj: DataFrameLike.TYPE, file: FileLike.TYPE, columns: VarNamesLike.TYPE = None, na_rep: str = '', delimiter: str = ',', quotechar: str = None, more_args: DictLike.TYPE = None, monitor: Monitor = Monitor.NONE): """ Write comma-separated values (CSV) to plain text file from a DataFrame or Dataset. :param obj: The object to write as CSV; must be a ``DataFrame`` or a ``Dataset``. :param file: The CSV file path. :param columns: The names of variables that should be converted to columns. If given, coordinate variables are included automatically. :param delimiter: Delimiter to use. :param na_rep: A string representation of a missing value (no-data value). :param quotechar: The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. :param more_args: Other optional keyword arguments. Please refer to Pandas documentation of ``pandas.to_csv()`` function. :param monitor: optional progress monitor """ if obj is None: raise ValidationError('obj must not be None') columns = VarNamesLike.convert(columns) if isinstance(obj, pd.DataFrame): # The following code is needed, because Pandas treats any kw given in kwargs as being set, even if just None. kwargs = DictLike.convert(more_args) if kwargs is None: kwargs = {} if columns: kwargs.update(columns=columns) if delimiter: kwargs.update(sep=delimiter) if na_rep: kwargs.update(na_rep=na_rep) if quotechar: kwargs.update(quotechar=quotechar) with monitor.starting('Writing to CSV', 1): obj.to_csv(file, index_label='index', **kwargs) monitor.progress(1) elif isinstance(obj, xr.Dataset): var_names = [var_name for var_name in obj.data_vars if columns is None or var_name in columns] dim_names = None data_vars = [] for var_name in var_names: data_var = obj.data_vars[var_name] if dim_names is None: dim_names = data_var.dims elif dim_names != data_var.dims: raise ValidationError('Not all variables have the same dimensions. ' 'Please select variables so that their dimensions are equal.') data_vars.append(data_var) if dim_names is None: raise ValidationError('None of the selected variables has a dimension.') coord_vars = [] for dim_name in dim_names: if dim_name in obj.coords: coord_var = obj.coords[dim_name] else: coord_var = None for data_var in obj.coords.values(): if len(data_var.dims) == 1 and data_var.dims[0] == dim_name: coord_var = data_var break if coord_var is None: raise ValueError(f'No coordinate variable found for dimension "{dim_name}"') coord_vars.append(coord_var) coord_indexes = [range(len(coord_var)) for coord_var in coord_vars] num_coords = len(coord_vars) num_rows = 1 for coord_var in coord_vars: num_rows *= len(coord_var) stream = open(file, 'w') if isinstance(file, str) else file try: # Write header row stream.write('index') for i in range(num_coords): stream.write(delimiter) stream.write(coord_vars[i].name) for data_var in data_vars: stream.write(delimiter) stream.write(data_var.name) stream.write('\n') with monitor.starting('Writing CSV', num_rows): row = 0 for index in itertools.product(*coord_indexes): # Write data row stream.write(str(row)) for i in range(num_coords): coord_value = coord_vars[i].values[index[i]] stream.write(delimiter) stream.write(str(coord_value)) for data_var in data_vars: var_value = data_var.values[index] stream.write(delimiter) stream.write(str(var_value)) stream.write('\n') monitor.progress(1) row += 1 finally: if isinstance(file, str): stream.close() elif obj is None: raise ValidationError('obj must not be None') else: raise ValidationError('obj must be a pandas.DataFrame or a xarray.Dataset')
def temporal_agg(source: str, start_date: str = None, end_date: str = None, var: VarNamesLike.TYPE = None, level: str = 'mon', method: str = 'mean', save_data: bool = False, monitor: Monitor = Monitor.NONE) -> (xr.Dataset, str): """ Perform temporal aggregation of the given data source to the given level using the given method for the given time range. Only full time periods of the given time range will be aggregated. Depending on the given time range, data size, as well as internet connection quality, this operation can potentially take a very long time to finish. Careful consideration is needed in choosing the var parameter to create meaningful outputs. This is unique for each data source. The aggregation result is saved into the local data store for later reuse. :param source: Data source to aggregate :param start_date: Start date of aggregation. If not given, data source start date is used instead :param end_date: End date of aggregation. If not given, data source end date is used instead :param var: If given, only these dataset variables will be preserved in the result :param level: Aggregation level :param method: Aggregation method :param save_data: Whether to save data downloaded during this operation. This can potentially be a lot of data. :param monitor: A progress monitor to use :return: The local data source identifier for the aggregated data """ # Raise not implemented, while not finished raise ValueError("Operation is not implemented.") var = VarNamesLike.convert(var) # Select the appropriate data source data_store_list = DATA_STORE_REGISTRY.get_data_stores() data_sources = query_data_sources(data_store_list, name=source) if len(data_sources) == 0: raise ValueError("No data_source found for the given query " "term {}".format(source)) elif len(data_sources) > 1: raise ValueError("{} data_sources found for the given query " "term {}".format(data_sources, source)) data_source = data_sources[0] source_info = data_source.cache_info # We have to do this to have temporal coverage info in meta_info data_source._init_file_list() # Check if the data source temporal resolution is known known_res = ('day', '8-days', 'mon', 'yr') fq = data_source.meta_info['time_frequency'] if (not fq) or (fq not in known_res): raise ValueError("The given data source features unknown time " "resolution: {}".format(fq)) # Check if the operation supports the desired aggregation step valid_steps = list() valid_steps.append(('day', 'mon')) if (fq, level) not in valid_steps: raise ValueError("Currently the operation does not support aggregation" " from {} to {}".format(fq, level)) # Determine start and end dates if not start_date: start_date = data_source.meta_info['temporal_coverage_start'] start_date = to_datetime(start_date) # If start_date is not start of the month, move it to the 1st of next # month if start_date.day != 1: try: start_date = datetime(start_date.year, start_date.month + 1, 1) except ValueError: # We have tried to set the month to 13 start_date = datetime(start_date.year + 1, 1, 1) if not end_date: end_date = data_source.meta_info['temporal_coverage_end'] end_date = to_datetime(end_date) # If end date is not end of the month, move it to the last day of the # previous month if not _is_end_of_month(end_date): try: end_date = datetime(end_date.year, end_date.month - 1, 27) except ValueError: # We have tried to set the month to 0 end_date = datetime(end_date.year - 1, 12, 31) end_date = _end_of_month(end_date.year, end_date.month) # Determine the count of processing periods n_periods = (end_date.year - start_date.year + 1) * 12\ + end_date.month - start_date.month - 11 # 2000-4-1, 2000-6-30 -> 12 + 2 -11 = 3 if n_periods < 1: raise ValueError("The given time range does not contain any full " "calendar months to do aggregation with.") # Set up the monitor total_work = 100 with monitor.starting('Aggregate', total_work=total_work): monitor.progress(work=0) step = total_work * 0.9 / n_periods # Process the data source period by period tmin = start_date while tmin < end_date: tmax = _end_of_month(tmin.year, tmin.month) # Determine if the data for the given period are already downloaded # If at least one file of the given time range is present, we # don't delete the data for this period, we do the syncing anyway was_already_downloaded = False dt_range = to_datetime_range(tmin, tmax) for date in source_info: if dt_range[0] <= date <= dt_range[1]: was_already_downloaded = True # One is enough break worked = monitor._worked data_source.sync(dt_range, monitor=monitor.child(work=step * 0.9)) if worked == monitor._worked: monitor.progress(work=step * 0.9) ds = data_source.open_dataset(dt_range) # Filter the dataset ds = select_var(ds, var) # Do the aggregation # Save the dataset for this period into local data store # Close and delete the files if needed ds.close() # delete data for the current period,if it should be deleted and it # was not already downloaded. if (not save_data) and (not was_already_downloaded): data_source.delete_local(dt_range) monitor.progress(work=step * 0.1) # tmin for next iteration try: tmin = datetime(tmin.year, tmin.month + 1, 1) except ValueError: # Couldn't add a month -> end of year tmin = datetime(tmin.year + 1, 1, 1) pass monitor.progress(work=step * 0.1) # Return the local data source id return None
def plot_hovmoeller(ds: xr.Dataset, var: VarName.TYPE = None, x_axis: DimName.TYPE = None, y_axis: DimName.TYPE = None, method: str = 'mean', contour: bool = True, title: str = None, file: str = None, monitor: Monitor = Monitor.NONE, **kwargs) -> Figure: """ Create a Hovmoeller plot of the given dataset. Dimensions other than the ones defined as x and y axis will be aggregated using the given method to produce the plot. :param ds: Dataset to plot :param var: Name of the variable to plot :param x_axis: Dimension to show on x axis :param y_axis: Dimension to show on y axis :param method: Aggregation method :param contour: Whether to produce a contour plot :param title: Plot title :param file: path to a file in which to save the plot :param monitor: A progress monitor :param kwargs: Keyword arguments to pass to underlying xarray plotting fuction """ var_name = None if not var: for key in ds.data_vars.keys(): var_name = key break else: var_name = VarName.convert(var) var = ds[var_name] if not x_axis: x_axis = var.dims[0] else: x_axis = DimName.convert(x_axis) if not y_axis: try: y_axis = var.dims[1] except IndexError: raise ValidationError( 'Given dataset variable should have at least two dimensions.') else: y_axis = DimName.convert(y_axis) if x_axis == y_axis: raise ValidationError('Dimensions should differ between plot axis.') dims = list(var.dims) try: dims.remove(x_axis) dims.remove(y_axis) except ValueError: raise ValidationError( 'Given dataset variable: {} does not feature requested dimensions:\ {}, {}.'.format(var_name, x_axis, y_axis)) ufuncs = { 'min': np.nanmin, 'max': np.nanmax, 'mean': np.nanmean, 'median': np.nanmedian, 'sum': np.nansum } with monitor.starting("Plot Hovmoeller", total_work=100): monitor.progress(5) with monitor.child(90).observing("Aggregate"): var = var.reduce(ufuncs[method], dim=dims) monitor.progress(5) figure = plt.figure() ax = figure.add_subplot(111) if x_axis == 'time': figure.autofmt_xdate() if contour: var.plot.contourf(ax=ax, x=x_axis, y=y_axis, **kwargs) else: var.plot.pcolormesh(ax=ax, x=x_axis, y=y_axis, **kwargs) if title: ax.set_title(title) figure.tight_layout() if file: figure.savefig(file) return figure if not in_notebook() else None
def detect_outliers(ds: xr.Dataset, var: VarNamesLike.TYPE, threshold_low: float = 0.05, threshold_high: float = 0.95, quantiles: bool = True, mask: bool = False, monitor: Monitor = Monitor.NONE) -> xr.Dataset: """ Detect outliers in the given Dataset. When mask=True the input dataset should not contain nan values, otherwise all existing nan values will be marked as 'outliers' in the mask data array added to the output dataset. :param ds: The dataset or dataframe for which to do outlier detection :param var: Variable or variables in the dataset to which to do outlier detection. Note that when multiple variables are selected, absolute threshold values might not make much sense. Wild cards can be used to select multiple variables matching a pattern. :param threshold_low: Values less or equal to this will be removed/masked :param threshold_high: Values greater or equal to this will be removed/masked :param quantiles: If True, threshold values are treated as quantiles, otherwise as absolute values. :param mask: If True, an ancillary variable containing flag values for outliers will be added to the dataset. Otherwise, outliers will be replaced with nan directly in the data variables. :param monitor: A progress monitor. :return: The dataset with outliers masked or replaced with nan """ ds = DatasetLike.convert(ds) # Create a list of variable names on which to perform outlier detection # based on the input comma separated list that can contain wildcards var_patterns = VarNamesLike.convert(var) all_vars = list(ds.data_vars.keys()) variables = list() for pattern in var_patterns: leave = fnmatch.filter(all_vars, pattern) variables = variables + leave # For each array in the dataset for which we should detect outliers, detect # outliers ret_ds = ds.copy() with monitor.starting("detect_outliers", total_work=len(variables) * 3): for var_name in variables: if quantiles: # Get threshold values with monitor.child(1).observing("quantile low"): threshold_low = ret_ds[var_name].quantile(threshold_low) with monitor.child(1).observing("quantile high"): threshold_high = ret_ds[var_name].quantile(threshold_high) else: monitor.progress(2) # If not mask, put nans in the data arrays for min/max outliers if not mask: arr = ret_ds[var_name] attrs = arr.attrs ret_ds[var_name] = arr.where((arr > threshold_low) & (arr < threshold_high)) ret_ds[var_name].attrs = attrs else: # Create and add a data variable containing the mask for this data # variable _mask_outliers(ret_ds, var_name, threshold_low, threshold_high) monitor.progress(1) return ret_ds
def plot_hovmoeller(ds: xr.Dataset, var: VarName.TYPE = None, x_axis: DimName.TYPE = None, y_axis: DimName.TYPE = None, method: str = 'mean', contour: bool = True, title: str = None, file: str = None, monitor: Monitor = Monitor.NONE, **kwargs) -> Figure: """ Create a Hovmoeller plot of the given dataset. Dimensions other than the ones defined as x and y axis will be aggregated using the given method to produce the plot. :param ds: Dataset to plot :param var: Name of the variable to plot :param x_axis: Dimension to show on x axis :param y_axis: Dimension to show on y axis :param method: Aggregation method :param contour: Whether to produce a contour plot :param title: Plot title :param file: path to a file in which to save the plot :param monitor: A progress monitor :param kwargs: Keyword arguments to pass to underlying xarray plotting fuction """ var_name = None if not var: for key in ds.data_vars.keys(): var_name = key break else: var_name = VarName.convert(var) var = ds[var_name] if not x_axis: x_axis = var.dims[0] else: x_axis = DimName.convert(x_axis) if not y_axis: try: y_axis = var.dims[1] except IndexError: raise ValidationError('Given dataset variable should have at least two dimensions.') else: y_axis = DimName.convert(y_axis) if x_axis == y_axis: raise ValidationError('Dimensions should differ between plot axis.') dims = list(var.dims) try: dims.remove(x_axis) dims.remove(y_axis) except ValueError: raise ValidationError('Given dataset variable: {} does not feature requested dimensions:\ {}, {}.'.format(var_name, x_axis, y_axis)) ufuncs = {'min': np.nanmin, 'max': np.nanmax, 'mean': np.nanmean, 'median': np.nanmedian, 'sum': np.nansum} with monitor.starting("Plot Hovmoeller", total_work=100): monitor.progress(5) with monitor.child(90).observing("Aggregate"): var = var.reduce(ufuncs[method], dim=dims) monitor.progress(5) figure = plt.figure() ax = figure.add_subplot(111) if x_axis == 'time': figure.autofmt_xdate() if contour: var.plot.contourf(ax=ax, x=x_axis, y=y_axis, **kwargs) else: var.plot.pcolormesh(ax=ax, x=x_axis, y=y_axis, **kwargs) if title: ax.set_title(title) figure.tight_layout() if file: figure.savefig(file) return figure if not in_notebook() else None
def long_term_average(ds: DatasetLike.TYPE, var: VarNamesLike.TYPE = None, monitor: Monitor = Monitor.NONE) -> xr.Dataset: """ Perform long term average of the given dataset by doing a mean of monthly values over the time range covered by the dataset. E.g. it averages all January values, all February values, etc, to create a dataset with twelve time slices each containing a mean of respective monthly values. For further information on climatological datasets, see http://cfconventions.org/cf-conventions/v1.6.0/cf-conventions.html#climatological-statistics :param ds: A monthly dataset to average :param var: If given, only these variables will be preserved in the resulting dataset :param monitor: A progress monitor :return: A climatological long term average dataset """ ds = DatasetLike.convert(ds) # Check if time dtype is what we want if 'datetime64[ns]' != ds.time.dtype: raise ValueError( 'Long term average operation expects a dataset with the' ' time coordinate of type datetime64[ns], but received' ' {}. Running the normalize operation on this' ' dataset may help'.format(ds.time.dtype)) # Check if we have a monthly dataset try: if ds.attrs['time_coverage_resolution'] != 'P1M': raise ValueError( 'Long term average operation expects a monthly dataset' ' running temporal aggregation on this dataset' ' beforehand may help.') except KeyError: raise ValueError('Could not determine temporal resolution. Running' ' the adjust_temporal_attrs operation beforehand may' ' help.') var = VarNamesLike.convert(var) # Shallow retset = ds.copy() if var: retset = select_var(retset, var) time_min = pd.Timestamp(ds.time.values[0]) time_max = pd.Timestamp(ds.time.values[-1]) total_work = 100 with monitor.starting('LTA', total_work=total_work): monitor.progress(work=0) step = total_work / 12 kwargs = {'monitor': monitor, 'step': step} retset = retset.groupby('time.month', squeeze=False).apply(_mean, **kwargs) # Make the return dataset CF compliant retset = retset.rename({'month': 'time'}) retset['time'] = pd.date_range('{}-01-01'.format(time_min.year), freq='MS', periods=12) climatology_bounds = xr.DataArray(data=np.tile([time_min, time_max], (12, 1)), dims=['time', 'nv'], name='climatology_bounds') retset['climatology_bounds'] = climatology_bounds retset.time.attrs = ds.time.attrs retset.time.attrs['climatology'] = 'climatology_bounds' for var in retset.data_vars: try: retset[var].attrs['cell_methods'] = \ retset[var].attrs['cell_methods'] + ' time: mean over years' except KeyError: retset[var].attrs['cell_methods'] = 'time: mean over years' return retset
def data_frame_aggregate(df: DataFrameLike.TYPE, var_names: VarNamesLike.TYPE = None, aggregate_geometry: bool = False, monitor: Monitor = Monitor.NONE) -> pd.DataFrame: """ Aggregate columns into count, mean, median, sum, std, min, and max. Return a new (Geo)DataFrame with a single row containing all aggregated values. Specify whether the geometries of the GeoDataFrame are to be aggregated. All geometries are merged union-like. The return data type will always be the same as the input data type. :param df: The (Geo)DataFrame to be analysed :param var_names: Variables to be aggregated ('None' uses all aggregatable columns) :param aggregate_geometry: Aggregate (union like) the geometry and add it to the resulting GeoDataFrame :param monitor: Monitor for progress bar :return: returns either DataFrame or GeoDataFrame. Keeps input data type """ vns = VarNamesLike.convert(var_names) df_is_geo = isinstance(df, gpd.GeoDataFrame) aggregations = ["count", "mean", "median", "sum", "std", "min", "max"] # Check var names integrity (aggregatable, exists in data frame) types_accepted_for_agg = ['float64', 'int64', 'bool'] agg_columns = list( df.select_dtypes(include=types_accepted_for_agg).columns) if df_is_geo: agg_columns.append('geometry') columns = list(df.columns) if vns is None: vns = agg_columns diff = list(set(vns) - set(columns)) if len(diff) > 0: raise ValidationError('Variable ' + ','.join(diff) + ' not in data frame!') diff = list(set(vns) - set(agg_columns)) if len(diff) > 0: raise ValidationError('Variable(s) ' + ','.join(diff) + ' not aggregatable!') try: df['geometry'] except KeyError as e: raise ValidationError( 'Variable geometry not in GEO data frame!') from e # Aggregate columns if vns is None: df_buff = df.select_dtypes( include=types_accepted_for_agg).agg(aggregations) else: df_buff = df[vns].select_dtypes( include=types_accepted_for_agg).agg(aggregations) res = {} for n in df_buff.columns: for a in aggregations: val = df_buff[n][a] h = n + '_' + a res[h] = [val] df_agg = pd.DataFrame(res) # Aggregate (union) geometry if GeoDataFrame if df_is_geo and aggregate_geometry: total_work = 100 num_work_rows = 1 + len(df) // total_work with monitor.starting('Aggregating geometry: ', total_work): multi_polygon = shapely.geometry.MultiPolygon() i = 0 for rec in df.geometry: if monitor.is_cancelled(): break # noinspection PyBroadException try: multi_polygon = multi_polygon.union(other=rec) except Exception: pass if i % num_work_rows == 0: monitor.progress(work=1) i += 1 df_agg = gpd.GeoDataFrame(df_agg, geometry=[multi_polygon], crs=df.crs) return df_agg
def animate_map(ds: xr.Dataset, var: VarName.TYPE = None, animate_dim: str = 'time', interval: int = 200, true_range: bool = False, indexers: DictLike.TYPE = None, region: PolygonLike.TYPE = None, projection: str = 'PlateCarree', central_lon: float = 0.0, title: str = None, contour_plot: bool = False, cmap_params: DictLike.TYPE = None, plot_properties: DictLike.TYPE = None, file: str = None, monitor: Monitor = Monitor.NONE) -> HTML: """ Create a geographic map animation for the variable given by dataset *ds* and variable name *var*. Creates an animation of the given variable from the given dataset on a map with coastal lines. In case no variable name is given, the first encountered variable in the dataset is animated. It is also possible to set extents of the animation. If no extents are given, a global animation is created. The following file formats for saving the animation are supported: html :param ds: the dataset containing the variable to animate :param var: the variable's name :param animate_dim: Dimension to animate, if none given defaults to time. :param interval: Delay between frames in milliseconds. Defaults to 200. :param true_range: If True, calculates colormap and colorbar configuration parameters from the whole dataset. Can potentially take a lot of time. Defaults to False, in which case the colormap is calculated from the first frame. :param indexers: Optional indexers into data array of *var*. The *indexers* is a dictionary or a comma-separated string of key-value pairs that maps the variable's dimension names to constant labels. e.g. "layer=4". :param region: Region to animate :param projection: name of a global projection, see http://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html :param central_lon: central longitude of the projection in degrees :param title: an optional title :param contour_plot: If true plot a filled contour plot of data, otherwise plots a pixelated colormesh :param cmap_params: optional additional colormap configuration parameters, e.g. "vmax=300, cmap='magma'" For full reference refer to http://xarray.pydata.org/en/stable/generated/xarray.plot.contourf.html :param plot_properties: optional plot properties for Python matplotlib, e.g. "bins=512, range=(-1.5, +1.5)" For full reference refer to https://matplotlib.org/api/lines_api.html and https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.contourf.html :param file: path to a file in which to save the animation :param monitor: A progress monitor. :return: An animation in HTML format """ if not isinstance(ds, xr.Dataset): raise NotImplementedError('Only gridded datasets are currently supported') var_name = None if not var: for key in ds.data_vars.keys(): var_name = key break else: var_name = VarName.convert(var) try: var = ds[var_name] except KeyError: raise ValidationError('Provided variable name "{}" does not exist in the given dataset'.format(var_name)) indexers = DictLike.convert(indexers) or {} properties = DictLike.convert(plot_properties) or {} cmap_params = DictLike.convert(cmap_params) or {} extents = None bounds = handle_plot_polygon(region) if bounds: lon_min, lat_min, lon_max, lat_max = bounds extents = [lon_min, lon_max, lat_min, lat_max] if len(ds.lat) < 2 or len(ds.lon) < 2: # Matplotlib can not plot datasets with less than these dimensions with # contourf and pcolormesh methods raise ValidationError('The minimum dataset spatial dimensions to create a map' ' plot are (2,2)') # See http://scitools.org.uk/cartopy/docs/v0.15/crs/projections.html# if projection == 'PlateCarree': proj = ccrs.PlateCarree(central_longitude=central_lon) elif projection == 'LambertCylindrical': proj = ccrs.LambertCylindrical(central_longitude=central_lon) elif projection == 'Mercator': proj = ccrs.Mercator(central_longitude=central_lon) elif projection == 'Miller': proj = ccrs.Miller(central_longitude=central_lon) elif projection == 'Mollweide': proj = ccrs.Mollweide(central_longitude=central_lon) elif projection == 'Orthographic': proj = ccrs.Orthographic(central_longitude=central_lon) elif projection == 'Robinson': proj = ccrs.Robinson(central_longitude=central_lon) elif projection == 'Sinusoidal': proj = ccrs.Sinusoidal(central_longitude=central_lon) elif projection == 'NorthPolarStereo': proj = ccrs.NorthPolarStereo(central_longitude=central_lon) elif projection == 'SouthPolarStereo': proj = ccrs.SouthPolarStereo(central_longitude=central_lon) else: raise ValidationError('illegal projection: "%s"' % projection) figure = plt.figure(figsize=(8, 4)) ax = plt.axes(projection=proj) if extents: ax.set_extent(extents, ccrs.PlateCarree()) else: ax.set_global() ax.coastlines() if not animate_dim: animate_dim = 'time' indexers[animate_dim] = var[animate_dim][0] var_data = get_var_data(var, indexers, remaining_dims=('lon', 'lat')) with monitor.starting("animate", len(var[animate_dim]) + 3): if true_range: data_min, data_max = _get_min_max(var, monitor=monitor) else: data_min, data_max = _get_min_max(var_data, monitor=monitor) cmap_params = determine_cmap_params(data_min, data_max, **cmap_params) plot_kwargs = {**properties, **cmap_params} # Plot the first frame to set-up the axes with the colorbar properly # transform keyword is for the coordinate our data is in, which in case of a # 'normal' lat/lon dataset is PlateCarree. if contour_plot: var_data.plot.contourf(ax=ax, transform=ccrs.PlateCarree(), subplot_kws={'projection': proj}, add_colorbar=True, **plot_kwargs) else: var_data.plot.pcolormesh(ax=ax, transform=ccrs.PlateCarree(), subplot_kws={'projection': proj}, add_colorbar=True, **plot_kwargs) if title: ax.set_title(title) figure.tight_layout() monitor.progress(1) def run(value): ax.clear() if extents: ax.set_extent(extents, ccrs.PlateCarree()) else: ax.set_global() ax.coastlines() indexers[animate_dim] = value var_data = get_var_data(var, indexers, remaining_dims=('lon', 'lat')) var_data.plot.contourf(ax=ax, transform=ccrs.PlateCarree(), subplot_kws={'projection': proj}, add_colorbar=False, **plot_kwargs) if title: ax.set_title(title) monitor.progress(1) return ax anim = animation.FuncAnimation(figure, run, [i for i in var[animate_dim]], interval=interval, blit=False, repeat=False) anim_html = anim.to_jshtml() # Prevent the animation for running after it's finished del anim # Delete the rogue temp-file try: os.remove('None0000000.png') except FileNotFoundError: pass if file: with open(file, 'w') as outfile: outfile.write(anim_html) monitor.progress(1) return HTML(anim_html)
def anomaly_external(ds: xr.Dataset, file: str, transform: str = None, monitor: Monitor = Monitor.NONE) -> xr.Dataset: """ Calculate anomaly with external reference data, for example, a climatology. The given reference dataset is expected to consist of 12 time slices, one for each month. The returned dataset will contain the variable names found in both - the reference and the given dataset. Names found in the given dataset, but not in the reference, will be dropped from the resulting dataset. The calculated anomaly will be against the corresponding month of the reference data. E.g. January against January, etc. In case spatial extents differ between the reference and the given dataset, the anomaly will be calculated on the intersection. :param ds: The dataset to calculate anomalies from :param file: Path to reference data file :param transform: Apply the given transformation before calculating the anomaly. For supported operations see help on 'ds_arithmetics' operation. :param monitor: a progress monitor. :return: The anomaly dataset """ # Check if the time coordinate is of dtype datetime try: if ds.time.dtype != 'datetime64[ns]': raise ValidationError('The dataset provided for anomaly calculation' ' is required to have a time coordinate of' ' dtype datetime64[ns]. Running the normalize' ' operation on this dataset might help.') except AttributeError: raise ValidationError('The dataset provided for anomaly calculation' ' is required to have a time coordinate.') try: if ds.attrs['time_coverage_resolution'] != 'P1M': raise ValidationError('anomaly_external expects a monthly dataset' ' got: {} instead.'.format(ds.attrs['time_coverate_resolution'])) except KeyError: try: ds = adjust_temporal_attrs(ds) if ds.attrs['time_coverage_resolution'] != 'P1M': raise ValidationError('anomaly_external expects a monthly dataset' ' got: {} instead.'.format(ds.attrs['time_coverate_resolution'])) except KeyError: raise ValidationError('Could not determine temporal resolution of' ' of the given input dataset.') clim = xr.open_dataset(file) try: if len(clim.time) != 12: raise ValidationError('The reference dataset is expected to be a ' 'monthly climatology. The provided dataset has' ' a time dimension with length: {}'.format(len(clim.time))) except AttributeError: raise ValidationError('The reference dataset is required to ' 'have a time coordinate.') ret = ds.copy() if transform: ret = ds_arithmetics(ds, transform) # Group by months, subtract the appropriate slice from the reference # Note that this requires that 'time' coordinate labels are of type # datetime64[ns] total_work = 100 step = 100 / 12 with monitor.starting('Anomaly', total_work=total_work): monitor.progress(work=0) kwargs = {'ref': clim, 'monitor': monitor, 'step': step} ret = ret.groupby(ds['time.month']).apply(_group_anomaly, **kwargs) # Running groupby results in a redundant 'month' variable being added to # the dataset ret = ret.drop('month') ret.attrs = ds.attrs # The dataset may be cropped return adjust_spatial_attrs(ret)
def data_frame_find_closest(gdf: gpd.GeoDataFrame, location: GeometryLike.TYPE, max_results: int = 1, max_dist: float = 180, dist_col_name: str = 'distance', monitor: Monitor = Monitor.NONE) -> gpd.GeoDataFrame: """ Find the *max_results* records closest to given *location* in the given GeoDataFrame *gdf*. Return a new GeoDataFrame containing the closest records. If *dist_col_name* is given, store the actual distances in this column. Distances are great-circle distances measured in degrees from a representative center of the given *location* geometry to the representative centres of each geometry in the *gdf*. :param gdf: The GeoDataFrame. :param location: A location given as arbitrary geometry. :param max_results: Maximum number of results. :param max_dist: Ignore records whose distance is greater than this value in degrees. :param dist_col_name: Optional name of a new column that will store the actual distances. :param monitor: A progress monitor. :return: A new GeoDataFrame containing the closest records. """ location = GeometryLike.convert(location) location_point = location.representative_point() target_crs = dict(init='epsg:4326') try: source_crs = gdf.crs or target_crs except AttributeError: source_crs = target_crs reprojection_func = _get_reprojection_func(source_crs, target_crs) try: geometries = gdf.geometry except AttributeError as e: raise ValidationError('Missing default geometry column in data frame.') from e num_rows = len(geometries) indexes = list() # PERF: Note, this operation may be optimized by computing the great-circle distances using numpy array math! total_work = 100 num_work_rows = 1 + num_rows // total_work with monitor.starting('Finding closest records', total_work): for i in range(num_rows): geometry = geometries.iloc[i] if geometry is not None: # noinspection PyBroadException try: representative_point = geometry.representative_point() except BaseException: # For some geometries shapely.representative_point() raises AttributeError or ValueError. # E.g. features that span the poles will raise ValueError. # The quick and dirty solution here is to catch such exceptions and ignore them. representative_point = None if representative_point is not None: representative_point = _transform_coordinates(representative_point, reprojection_func) if representative_point is not None: # noinspection PyTypeChecker dist = great_circle_distance(location_point, representative_point) if dist <= max_dist: indexes.append((i, dist)) if i % num_work_rows == 0: monitor.progress(work=1) indexes = sorted(indexes, key=lambda item: item[1]) num_results = min(max_results, len(indexes)) indexes, distances = zip(*indexes[0:num_results]) new_gdf = gdf.iloc[list(indexes)] if not isinstance(new_gdf, gpd.GeoDataFrame): new_gdf = gpd.GeoDataFrame(new_gdf, crs=source_crs) if dist_col_name: new_gdf[dist_col_name] = np.array(distances) return new_gdf
def _lta_general(ds: xr.Dataset, monitor: Monitor): """ Try to carry out a long term average in a general case, notably in the case of having seasonal datasets :param ds: Dataset to aggregate :param monitor: Progress monitor :return: Aggregated dataset """ time_min = pd.Timestamp(ds.time.values[0], tzinfo=timezone.utc) time_max = pd.Timestamp(ds.time.values[-1], tzinfo=timezone.utc) total_work = 100 retset = ds # The dataset should feature time periods consistent over years # and denoted with the same dates each year if not _is_seasonal(ds.time): raise ValidationError( "A long term average dataset can not be created for" " a dataset with inconsistent seasons.") # Get 'representative year' c = 0 for group in ds.time.groupby('time.year'): c = c + 1 if c == 1: rep_year = group[1].time continue if c == 2 and len(group[1].time) > len(rep_year): rep_year = group[1].time break with monitor.starting('LTA', total_work=total_work): monitor.progress(work=0) step = total_work / len(rep_year.time) kwargs = {'monitor': monitor, 'step': step} retset = retset.groupby('time.month', squeeze=False).apply(_groupby_day, **kwargs) # Make the return dataset CF compliant retset = retset.stack(time=('month', 'day')) # Turn month, day coordinates to time retset = retset.reset_index('time') retset = retset.drop(['month', 'day']) retset['time'] = rep_year.time climatology_bounds = xr.DataArray(data=np.tile([time_min, time_max], (len(rep_year), 1)), dims=['time', 'nv'], name='climatology_bounds') retset['climatology_bounds'] = climatology_bounds retset.time.attrs = ds.time.attrs retset.time.attrs['climatology'] = 'climatology_bounds' for var in retset.data_vars: try: retset[var].attrs['cell_methods'] = \ retset[var].attrs['cell_methods'] + ' time: mean over years' except KeyError: retset[var].attrs['cell_methods'] = 'time: mean over years' return retset
def data_frame_aggregate(df: DataFrameLike.TYPE, var_names: VarNamesLike.TYPE = None, aggregate_geometry: bool = False, monitor: Monitor = Monitor.NONE) -> pd.DataFrame: """ Aggregate columns into count, mean, median, sum, std, min, and max. Return a new (Geo)DataFrame with a single row containing all aggregated values. Specify whether the geometries of the GeoDataFrame are to be aggregated. All geometries are merged union-like. The return data type will always be the same as the input data type. :param df: The (Geo)DataFrame to be analysed :param var_names: Variables to be aggregated ('None' uses all aggregatable columns) :param aggregate_geometry: Aggregate (union like) the geometry and add it to the resulting GeoDataFrame :param monitor: Monitor for progress bar :return: returns either DataFrame or GeoDataFrame. Keeps input data type """ vns = VarNamesLike.convert(var_names) df_is_geo = isinstance(df, gpd.GeoDataFrame) aggregations = ["count", "mean", "median", "sum", "std", "min", "max"] # Check var names integrity (aggregatable, exists in data frame) types_accepted_for_agg = ['float64', 'int64', 'bool'] agg_columns = list(df.select_dtypes(include=types_accepted_for_agg).columns) if df_is_geo: agg_columns.append('geometry') columns = list(df.columns) if vns is None: vns = agg_columns diff = list(set(vns) - set(columns)) if len(diff) > 0: raise ValidationError('Variable ' + ','.join(diff) + ' not in data frame!') diff = list(set(vns) - set(agg_columns)) if len(diff) > 0: raise ValidationError('Variable(s) ' + ','.join(diff) + ' not aggregatable!') try: df['geometry'] except KeyError as e: raise ValidationError('Variable geometry not in GEO data frame!') from e # Aggregate columns if vns is None: df_buff = df.select_dtypes(include=types_accepted_for_agg).agg(aggregations) else: df_buff = df[vns].select_dtypes(include=types_accepted_for_agg).agg(aggregations) res = {} for n in df_buff.columns: for a in aggregations: val = df_buff[n][a] h = n + '_' + a res[h] = [val] df_agg = pd.DataFrame(res) # Aggregate (union) geometry if GeoDataFrame if df_is_geo and aggregate_geometry: total_work = 100 num_work_rows = 1 + len(df) // total_work with monitor.starting('Aggregating geometry: ', total_work): multi_polygon = shapely.geometry.MultiPolygon() i = 0 for rec in df.geometry: if monitor.is_cancelled(): break # noinspection PyBroadException try: multi_polygon = multi_polygon.union(other=rec) except Exception: pass if i % num_work_rows == 0: monitor.progress(work=1) i += 1 df_agg = gpd.GeoDataFrame(df_agg, geometry=[multi_polygon], crs=df.crs) return df_agg
def data_frame_find_closest( gdf: gpd.GeoDataFrame, location: GeometryLike.TYPE, max_results: int = 1, max_dist: float = 180, dist_col_name: str = 'distance', monitor: Monitor = Monitor.NONE) -> gpd.GeoDataFrame: """ Find the *max_results* records closest to given *location* in the given GeoDataFrame *gdf*. Return a new GeoDataFrame containing the closest records. If *dist_col_name* is given, store the actual distances in this column. Distances are great-circle distances measured in degrees from a representative center of the given *location* geometry to the representative centres of each geometry in the *gdf*. :param gdf: The GeoDataFrame. :param location: A location given as arbitrary geometry. :param max_results: Maximum number of results. :param max_dist: Ignore records whose distance is greater than this value in degrees. :param dist_col_name: Optional name of a new column that will store the actual distances. :param monitor: A progress monitor. :return: A new GeoDataFrame containing the closest records. """ location = GeometryLike.convert(location) location_point = location.representative_point() target_crs = dict(init='epsg:4326') try: source_crs = gdf.crs or target_crs except AttributeError: source_crs = target_crs reprojection_func = _get_reprojection_func(source_crs, target_crs) try: geometries = gdf.geometry except AttributeError as e: raise ValidationError( 'Missing default geometry column in data frame.') from e num_rows = len(geometries) indexes = list() # PERF: Note, this operation may be optimized by computing the great-circle distances using numpy array math! total_work = 100 num_work_rows = 1 + num_rows // total_work with monitor.starting('Finding closest records', total_work): for i in range(num_rows): geometry = geometries.iloc[i] if geometry is not None: # noinspection PyBroadException try: representative_point = geometry.representative_point() except BaseException: # For some geometries shapely.representative_point() raises AttributeError or ValueError. # E.g. features that span the poles will raise ValueError. # The quick and dirty solution here is to catch such exceptions and ignore them. representative_point = None if representative_point is not None: representative_point = _transform_coordinates( representative_point, reprojection_func) if representative_point is not None: # noinspection PyTypeChecker dist = great_circle_distance(location_point, representative_point) if dist <= max_dist: indexes.append((i, dist)) if i % num_work_rows == 0: monitor.progress(work=1) indexes = sorted(indexes, key=lambda item: item[1]) num_results = min(max_results, len(indexes)) indexes, distances = zip(*indexes[0:num_results]) new_gdf = gdf.iloc[list(indexes)] if not isinstance(new_gdf, gpd.GeoDataFrame): new_gdf = gpd.GeoDataFrame(new_gdf, crs=source_crs) if dist_col_name: new_gdf[dist_col_name] = np.array(distances) return new_gdf
def _lta_general(ds: xr.Dataset, monitor: Monitor): """ Try to carry out a long term average in a general case, notably in the case of having seasonal datasets :param ds: Dataset to aggregate :param monitor: Progress monitor :return: Aggregated dataset """ time_min = pd.Timestamp(ds.time.values[0], tzinfo=timezone.utc) time_max = pd.Timestamp(ds.time.values[-1], tzinfo=timezone.utc) total_work = 100 retset = ds # The dataset should feature time periods consistent over years # and denoted with the same dates each year if not _is_seasonal(ds.time): raise ValidationError("A long term average dataset can not be created for" " a dataset with inconsistent seasons.") # Get 'representative year' c = 0 for group in ds.time.groupby('time.year'): c = c + 1 if c == 1: rep_year = group[1].time continue if c == 2 and len(group[1].time) > len(rep_year): rep_year = group[1].time break with monitor.starting('LTA', total_work=total_work): monitor.progress(work=0) step = total_work / len(rep_year.time) kwargs = {'monitor': monitor, 'step': step} retset = retset.groupby('time.month', squeeze=False).apply(_groupby_day, **kwargs) # Make the return dataset CF compliant retset = retset.stack(time=('month', 'day')) # Turn month, day coordinates to time retset = retset.reset_index('time') retset = retset.drop(['month', 'day']) retset['time'] = rep_year.time climatology_bounds = xr.DataArray(data=np.tile([time_min, time_max], (len(rep_year), 1)), dims=['time', 'nv'], name='climatology_bounds') retset['climatology_bounds'] = climatology_bounds retset.time.attrs = ds.time.attrs retset.time.attrs['climatology'] = 'climatology_bounds' for var in retset.data_vars: try: retset[var].attrs['cell_methods'] = \ retset[var].attrs['cell_methods'] + ' time: mean over years' except KeyError: retset[var].attrs['cell_methods'] = 'time: mean over years' return retset