コード例 #1
0
    def test_random_walk_edge_chain_pattern(rng, chain_length):
        """ Test subsampling a chain sub-graph """
        n_iter = max(20, 100 * chain_length)
        multiplier = 4
        graph = DirectedGraph()
        for v in range(chain_length):
            for i in range(multiplier):
                for j in range(multiplier):
                    graph.add_edge((v, i), (v + 1, j))

        subgraph = random_walk_edge_sample(
            graph,
            rng,
            n_iter,
            n_seeds=1,  # any starting point in the chain
            use_opposite=True,
            use_both_ends=True,
            max_in_degree=1,
            max_out_degree=1)
        # Assert graph is a chain of expected length
        assert len(subgraph.edges) == chain_length
        assert (0 <= d <= 1 for _, d in subgraph.out_degree())
        assert (0 <= d <= 1 for _, d in subgraph.in_degree())

        # Find vertices - sorting here should retrieve the chaining
        vertices = sorted(list(subgraph.nodes))
        assert all(v in set((i, m) for m in range(multiplier))
                   for i, v in enumerate(vertices))

        # Inspect linkage
        assert all(e in subgraph.edges for e in zip(vertices, vertices[1:]))
コード例 #2
0
    def test_dataset(initializer_dict: Dict, expected_graph: DirectedGraph):
        """Check that wn18 dataset format is read and formated properly.
        Current test only covers reading embedding vectors from a file
        (e.g. word2vec pre-computed embeddings). Default randomly generated embeddings
        are not tested due to its trivial implementation and intrinsic randomness,
        that is more difficult to test.

        Args:
            initializer_dict (Dict): String representing wn18 dataset format
            expected_graph (DirectedGraph): Expected graph output
            TODO: add edgecases like plural empty lines, escape characters etc.
        """
        with TempDirectory() as d:
            d.write(raw_dataset_pat['train'], initializer_dict['wn18_graph'])
            d.write(raw_dataset_pat['valid'], initializer_dict['wn18_graph'])
            d.write(raw_dataset_pat['test'], initializer_dict['wn18_graph'])
            d.write(preproc_pat['entity2id'], initializer_dict['entity2id'])
            d.write(preproc_pat['relation2id'],
                    initializer_dict['relation2id'])
            w2v_dict_path = os.path.join(d.path, preproc_pat['word2vec_short'])
            with open(w2v_dict_path, 'wb') as f:
                pkl.dump(initializer_dict['w2v_dic'], f)
            ds: Dataset = Dataset(d.path, 'wn18', node2vec_path=w2v_dict_path)
            graph: DirectedGraph = DirectedGraph(ds.train)
            assert str(graph) == str(expected_graph)
            graph = DirectedGraph(ds.valid)
            assert str(graph) == str(expected_graph)
            graph = DirectedGraph(ds.test)
            assert str(graph) == str(expected_graph)
コード例 #3
0
 def test_dualize_relations(graph: DirectedGraph,
                            expected_graph: DirectedGraph) -> None:
     """
     test dual property
     """
     result = graph.dualize_relations()
     assert result == expected_graph
コード例 #4
0
 def test_prune(graph: DirectedGraph, node_to_prune: Hashable,
                expected_graph: DirectedGraph) -> None:
     """
     Verify that pruning the given node from graph yields the required graph
     """
     result_graph = graph.prune(node_to_prune)
     assert result_graph == expected_graph
コード例 #5
0
    def test_rand_prune(graph: DirectedGraph, pruning_factor: float,
                        seed: int) -> None:
        """
        test that random pruning gives the same result with same seeding
        """
        # initialize two random generator with same seed
        first_random_generator = random.Random()
        first_random_generator.seed(seed)

        second_random_generator = random.Random()
        second_random_generator.seed(seed)

        # prune graph using the two different random generators
        first_pruned_graph = graph.rand_prune(
            pruning_factor, random_generator=first_random_generator)
        second_pruned_graph = graph.rand_prune(
            pruning_factor, random_generator=second_random_generator)

        assert first_pruned_graph == second_pruned_graph
コード例 #6
0
 def test_integerify(graph: DirectedGraph, expected_graph: DirectedGraph):
     """
     Verify that integerification yields a consistent graph.
     Ideally we would want a test of isomorphism,
     but it is complicated, so it tests if
     the integerification yields the correct integers for each node.
     Hence this is a reggression test.
     """
     integerified_graph = graph.integerify()
     assert integerified_graph == expected_graph
コード例 #7
0
 def test_stringify(graph: DirectedGraph, expected_graph: DirectedGraph):
     """
     Verify that stringification yields a consistent graph. Ideally we would
     want a test of isomorphism, but it is complicated, so it tests if
     the stringification yields the correct strings for each node.
     Hence this is a reggression test.
     """
     stringified_graph = graph.stringify()
     assert all(
         set(node) <= __class__.ALLOWED_CHARS for node in stringified_graph)  # type: ignore # pylint: disable=undefined-variable
     assert stringified_graph == expected_graph
コード例 #8
0
    def test_random_walk_edge_star_pattern(rng, max_degree):
        """ Test subsampling of {1, k} -> 0 and then 0 -> {1, k} """
        n_iter = max(100, max_degree * 100)
        if max_degree <= 0:
            max_degree = 10
        graph = DirectedGraph()
        for v in range(1, max_degree * 2):
            graph.add_edge(v, 0)

        subgraph = random_walk_edge_sample(graph,
                                           rng,
                                           n_iter,
                                           n_seeds=1,
                                           use_opposite=False,
                                           use_both_ends=False)
        assert len(subgraph.edges) == 1  # only the seed

        subgraph = random_walk_edge_sample(graph,
                                           rng,
                                           n_iter,
                                           n_seeds=1,
                                           use_opposite=False,
                                           use_both_ends=True)
        assert len(subgraph.edges) == 1  # only the seed

        # Here we activate matching of edges *->0
        # => we can sample almost all the graph
        subgraph = random_walk_edge_sample(graph,
                                           rng,
                                           n_iter,
                                           n_seeds=1,
                                           use_opposite=True,
                                           use_both_ends=False,
                                           max_out_degree=1,
                                           max_in_degree=max_degree)
        assert len(subgraph.edges) == min(max_degree, n_iter)
コード例 #9
0
 def flush(self) -> None:
     """
     Reset the structure, removing all composite arrows
     """
     self._graph = DirectedGraph()
コード例 #10
0
    def test_random_walk_edge_functional_pattern(rng):
        """
        Minimal test case for the different sampling head and direction

        Graph to use should enable precise testing of the options.

        4 -> 0 -> 1 -> 2
        5 <- 0    1 <- 3
        """
        n_iter = 100  # override fixture to stabilize the tests

        graph = DirectedGraph()
        graph.add_edge(0, 1)
        graph.add_edge(1, 2)
        graph.add_edge(3, 1)
        graph.add_edge(4, 0)
        graph.add_edge(0, 5)

        # Step 1 - use_opposite=False, use_both_ends=False
        # From (0, 1), we should sample only edges starting from 1
        expected_subgraph = DirectedGraph()
        expected_subgraph.add_edge(0, 1)
        expected_subgraph.add_edge(1, 2)
        subgraph = random_walk_edge_sample(graph,
                                           rng,
                                           n_iter,
                                           seeds=[(0, 1)],
                                           use_opposite=False,
                                           use_both_ends=False)
        assert subgraph == expected_subgraph

        # Step 2 - use_opposite=False, use_both_ends=True
        # From (0, 1), we should sample only edges starting from 0 or 1
        expected_subgraph = DirectedGraph()
        expected_subgraph.add_edge(0, 1)
        expected_subgraph.add_edge(1, 2)
        expected_subgraph.add_edge(0, 5)
        subgraph = random_walk_edge_sample(graph,
                                           rng,
                                           n_iter,
                                           seeds=[(0, 1)],
                                           use_opposite=False,
                                           use_both_ends=True)
        assert subgraph == expected_subgraph

        # Step 3 - use_opposite=True, use_both_ends=False
        expected_subgraph = DirectedGraph()
        expected_subgraph.add_edge(0, 1)
        expected_subgraph.add_edge(1, 2)
        expected_subgraph.add_edge(3, 1)
        subgraph = random_walk_edge_sample(graph,
                                           rng,
                                           n_iter,
                                           seeds=[(0, 1)],
                                           use_opposite=True,
                                           use_both_ends=False)
        assert subgraph == expected_subgraph

        # Step 4 - use_opposite=True, use_both_ends=True => catch all
        subgraph = random_walk_edge_sample(graph,
                                           rng,
                                           n_iter,
                                           seeds=[(0, 1)],
                                           use_opposite=True,
                                           use_both_ends=True)
        assert subgraph == graph
コード例 #11
0
 def test_subgraph(graph: DirectedGraph, nodes_set: Set[Hashable],
                   expected_graph: DirectedGraph):
     """
     Test that subgraph extraction gives the right graph
     """
     assert graph.subgraph(nodes_set) == expected_graph
コード例 #12
0
 def test_over(graph: DirectedGraph, node: Hashable,
               nodes_set: Set[Hashable]) -> None:
     """
     tests that the over method returns the required set of nodes
     """
     assert graph.over(node) == frozenset(nodes_set)
コード例 #13
0
class TestDirectedGraph:
    """
    Unit tests for DirectedGraph class
    """

    # allowed chars for stringification
    ALLOWED_CHARS = (frozenset(digits) | frozenset(ascii_letters))

    # parameters for tests
    params: Dict[str, List[Any]] = {
        "test_init": [
            dict(initializer_dict={
                0: [0, "1"],
                2.: [()]
            },
                 expected_dict={
                     0: frozenset({0, "1"}),
                     "1": frozenset(),
                     2: frozenset({()}),
                     (): frozenset()
                 }),
            dict(initializer_dict={
                0: [1],
                1: [[]]
            }, expected_dict=None)
        ],
        "test_op": [
            dict(initializer_dict={
                0: [1],
                1: []
            },
                 expected_op=DirectedGraph({
                     0: [],
                     1: [0]
                 })),
            dict(initializer_dict={
                0: [1],
                1: [0]
            },
                 expected_op=DirectedGraph({
                     0: [1],
                     1: [0]
                 })),
            dict(initializer_dict={
                0: [],
                1: []
            },
                 expected_op=DirectedGraph({
                     0: [],
                     1: []
                 }))
        ],
        "test_delitem": [
            dict(graph=DirectedGraph({
                0: [],
                1: [0, 1],
                2: [1]
            }),
                 node_to_remove=1,
                 expected_graph=DirectedGraph({
                     0: [],
                     2: []
                 })),
            dict(graph=DirectedGraph({}),
                 node_to_remove=1,
                 expected_graph=DirectedGraph({}))
        ],
        "test_setitem": [
            dict(graph=DirectedGraph({
                0: [],
                1: [],
                2: []
            }),
                 node_to_add=0,
                 children=[1, 2],
                 expected_graph=DirectedGraph({
                     0: [1, 2],
                     1: [],
                     2: []
                 })),
            dict(graph=DirectedGraph({
                1: [],
                2: []
            }),
                 node_to_add=0,
                 children=[1, 2],
                 expected_graph=DirectedGraph({
                     0: [1, 2],
                     1: [],
                     2: []
                 })),
            dict(graph=DirectedGraph({}),
                 node_to_add=0,
                 children=[1, 2],
                 expected_graph=DirectedGraph({
                     0: [1, 2],
                     1: [],
                     2: []
                 }))
        ],
        "test_len": [
            dict(graph=DirectedGraph({}), expected_length=0),
            dict(graph=DirectedGraph({
                0: [],
                1: []
            }), expected_length=2),
            dict(graph=DirectedGraph({
                0: [1],
                1: []
            }), expected_length=2)
        ],
        "test_iter": [
            dict(graph=DirectedGraph({
                0: [],
                1: [1],
                2: []
            }),
                 nodes_set={0, 1, 2}),
            dict(graph=DirectedGraph({}), nodes_set={})
        ],
        "test_under": [
            dict(graph=DirectedGraph({
                0: [1, 2],
                1: [],
                2: []
            }),
                 node=0,
                 nodes_set={1, 2}),
            dict(graph=DirectedGraph({
                0: [1, 2],
                1: [],
                2: [3, 1],
                3: [4],
                4: []
            }),
                 node=0,
                 nodes_set={1, 2, 3, 4})
        ],
        "test_over": [
            dict(graph=DirectedGraph({
                0: [],
                1: [0],
                2: [0]
            }),
                 node=0,
                 nodes_set={1, 2}),
            dict(graph=DirectedGraph({
                0: [],
                1: [0, 2],
                2: [0],
                3: [2],
                4: [3]
            }),
                 node=0,
                 nodes_set={1, 2, 3, 4})
        ],
        "test_subgraph": [
            dict(graph=DirectedGraph({
                0: [],
                1: [],
                2: []
            }),
                 nodes_set={0},
                 expected_graph=DirectedGraph({0: []})),
            dict(graph=DirectedGraph({
                0: [0, 1],
                1: [],
                2: [0, 1]
            }),
                 nodes_set={0, 1},
                 expected_graph=DirectedGraph({
                     0: [0, 1],
                     1: []
                 }))
        ],
        "test_binary_operator": [
            dict(binary_op=or_,
                 first_graph=DirectedGraph({
                     0: [1],
                     1: []
                 }),
                 second_graph=DirectedGraph({
                     0: [],
                     1: [1]
                 }),
                 expected_graph=DirectedGraph({
                     (0, 0): [(0, 1)],
                     (0, 1): [],
                     (1, 0): [],
                     (1, 1): [(1, 1)]
                 })),
            dict(binary_op=and_,
                 first_graph=DirectedGraph({
                     0: [1],
                     1: []
                 }),
                 second_graph=DirectedGraph({
                     0: [],
                     1: [1]
                 }),
                 expected_graph=DirectedGraph({
                     (0, 0): [],
                     (0, 1): [(1, 1)],
                     (1, 0): [],
                     (1, 1): []
                 })),
            dict(binary_op=add,
                 first_graph=DirectedGraph({
                     0: [1],
                     1: []
                 }),
                 second_graph=DirectedGraph({
                     0: [],
                     1: [1]
                 }),
                 expected_graph=DirectedGraph({
                     (0, 0): [(0, 1), (1, 0), (1, 1)],
                     (0, 1): [(1, 0), (1, 1)],
                     (1, 0): [],
                     (1, 1): [(1, 1)]
                 })),
            dict(binary_op=matmul,
                 first_graph=DirectedGraph({
                     0: [1],
                     1: []
                 }),
                 second_graph=DirectedGraph({
                     0: [],
                     1: [1]
                 }),
                 expected_graph=DirectedGraph({
                     (0, 0): [(1, 0)],
                     (1, 0): [],
                     (0, 1): [(1, 1), (0, 1)],
                     (1, 1): [(1, 1)]
                 })),
            dict(binary_op=mul,
                 first_graph=DirectedGraph({
                     0: [1],
                     1: []
                 }),
                 second_graph=DirectedGraph({
                     0: [],
                     1: [1]
                 }),
                 expected_graph=DirectedGraph({
                     (0, 0): [(1, 0)],
                     (1, 0): [],
                     (0, 1): [(0, 1), (0, 1), (1, 1)],
                     (1, 1): [(0, 1), (1, 1)]
                 }))
        ],
        "test_prune": [
            dict(graph=DirectedGraph({
                0: [1],
                1: [2, 3],
                2: [],
                3: [],
                4: [0, 1]
            }),
                 node_to_prune=1,
                 expected_graph=DirectedGraph({
                     0: [2, 3],
                     2: [],
                     3: [],
                     4: [0, 2, 3]
                 }))
        ],
        "test_integerify": [
            dict(graph=DirectedGraph({
                (0, 0): [],
                "1": []
            }),
                 expected_graph=DirectedGraph({
                     0: [],
                     1: []
                 })),
            dict(graph=DirectedGraph({
                0.5: ["a"],
                "a": [],
                2: [0.5, "a"]
            }),
                 expected_graph=DirectedGraph({
                     2: [1],
                     1: [],
                     0: [2, 1]
                 }))
        ],
        "test_stringify": [
            dict(graph=DirectedGraph({
                (0, 0): [],
                "1": []
            }),
                 expected_graph=DirectedGraph({
                     "0x0": [],
                     "0x1": []
                 })),
            dict(graph=DirectedGraph({
                0.5: ["a"],
                "a": [],
                2: [0.5, "a"]
            }),
                 expected_graph=DirectedGraph({
                     "0x2": ["0x1"],
                     "0x1": [],
                     "0x0": ["0x2", "0x1"]
                 }))
        ],
        "test_rand_prune": [
            dict(graph=DirectedGraph({
                0: [1, 2, 3, 4],
                2: [3, 4, 6],
                6: [5, 9, 11]
            })),
            dict(graph=DirectedGraph({0: []})),
            dict(graph=DirectedGraph({}))
        ],
        "test_dualize_relations": [
            dict(graph=DirectedGraph({
                0: [1],
                1: []
            }),
                 expected_graph=DirectedGraph({
                     0: [1],
                     1: []
                 })),
            dict(graph=DirectedGraph({
                0: {
                    1: {
                        "label": 1
                    }
                },
                1: []
            }),
                 expected_graph=DirectedGraph({
                     0: {
                         1: {
                             ("label", False): 1,
                             ("label", True): 1
                         }
                     },
                     1: []
                 }))
        ]
    }

    @staticmethod
    def test_init(initializer_dict: Dict[Hashable, Iterable[Hashable]],
                  expected_dict: Optional[Dict[Hashable,
                                               FrozenSet[Hashable]]]):
        """
        check that initialization builds the correct graphs by adding missing
        nodes as keys.
        If the expected_dict is None, awaiting failure with a TypeError raised,
        because the initnializer_dict is invalid (some nodes are not hashable)
        """
        if expected_dict is None:
            with pytest.raises(TypeError):
                graph: DirectedGraph = DirectedGraph[Hashable](
                    initializer_dict)
        else:
            graph = DirectedGraph[Hashable](initializer_dict)
            dict_of_graph = {
                node: frozenset(children)
                for node, children in graph.items()
            }
            assert dict_of_graph == expected_dict

    @staticmethod
    def test_op(initializer_dict: Dict[Hashable, Iterable[Hashable]],
                expected_op: DirectedGraph) -> None:
        """
        test that the opposite of the graph is correctly computed at init
        """
        graph = DirectedGraph[Hashable](initializer_dict)
        graph_op = graph.op
        assert graph_op == expected_op

    @staticmethod
    def test_delitem(graph: DirectedGraph, node_to_remove: Hashable,
                     expected_graph: DirectedGraph):
        """
        test that node deletion works as intended
        """
        # copy graph
        graph_copy = copy(graph)

        # remove node from copy
        if node_to_remove in graph:
            del graph_copy[node_to_remove]

            # check the new keys of the graph are well defined
            assert graph_copy == expected_graph
        else:
            with pytest.raises(KeyError):
                # deleting non existing key should raise a key error
                del graph_copy[node_to_remove]

    @staticmethod
    def test_setitem(graph: DirectedGraph, node_to_add: Hashable,
                     children: Iterable[Hashable],
                     expected_graph: DirectedGraph) -> None:
        """
        test that resetting the list of children of a node works as intended
        """
        graph_copy = copy(graph)

        # reset list associated to node
        graph_copy[node_to_add] = children

        # verify that graph and its oppposite have expected value
        assert graph_copy == expected_graph
        assert graph_copy.op == expected_graph.op

    @staticmethod
    def test_len(graph: DirectedGraph, expected_length: int) -> None:
        """
        Check that the length of the graph and its opposite are right
        """
        assert len(graph) == expected_length
        assert len(graph.op) == expected_length

    @staticmethod
    def test_iter(graph: DirectedGraph, nodes_set: Set) -> None:
        """
        Test that itarating over the nodes of the graph goes though all of the
        necessary nodes, once only
        """
        assert Counter(iter(graph)) == Counter(nodes_set)

    @staticmethod
    def test_under(graph: DirectedGraph, node: Hashable,
                   nodes_set: Set[Hashable]) -> None:
        """
        tests that the under method returns the required set of nodes
        """
        assert graph.under(node) == frozenset(nodes_set)

    @staticmethod
    def test_over(graph: DirectedGraph, node: Hashable,
                  nodes_set: Set[Hashable]) -> None:
        """
        tests that the over method returns the required set of nodes
        """
        assert graph.over(node) == frozenset(nodes_set)

    @staticmethod
    def test_subgraph(graph: DirectedGraph, nodes_set: Set[Hashable],
                      expected_graph: DirectedGraph):
        """
        Test that subgraph extraction gives the right graph
        """
        assert graph.subgraph(nodes_set) == expected_graph

    @staticmethod
    def test_binary_operator(binary_op: Callable[[Any, Any], Any],
                             first_graph: DirectedGraph,
                             second_graph: DirectedGraph,
                             expected_graph: DirectedGraph) -> None:
        """
        Verify that the given binary operator applied to first_graph and
        second_graph yields expected_graph.
        """
        result_graph = binary_op(first_graph, second_graph)
        result_type = type(result_graph)
        expected_type = type(expected_graph)
        assert result_type == expected_type
        assert result_graph == expected_graph

    @staticmethod
    def test_prune(graph: DirectedGraph, node_to_prune: Hashable,
                   expected_graph: DirectedGraph) -> None:
        """
        Verify that pruning the given node from graph yields the required graph
        """
        result_graph = graph.prune(node_to_prune)
        assert result_graph == expected_graph

    @staticmethod
    def test_integerify(graph: DirectedGraph, expected_graph: DirectedGraph):
        """
        Verify that integerification yields a consistent graph.
        Ideally we would want a test of isomorphism,
        but it is complicated, so it tests if
        the integerification yields the correct integers for each node.
        Hence this is a reggression test.
        """
        integerified_graph = graph.integerify()
        assert integerified_graph == expected_graph

    @staticmethod
    def test_stringify(graph: DirectedGraph, expected_graph: DirectedGraph):
        """
        Verify that stringification yields a consistent graph. Ideally we would
        want a test of isomorphism, but it is complicated, so it tests if
        the stringification yields the correct strings for each node.
        Hence this is a reggression test.
        """
        stringified_graph = graph.stringify()
        assert all(
            set(node) <= __class__.ALLOWED_CHARS for node in stringified_graph)  # type: ignore # pylint: disable=undefined-variable
        assert stringified_graph == expected_graph

    @staticmethod
    def test_rand_prune(graph: DirectedGraph, pruning_factor: float,
                        seed: int) -> None:
        """
        test that random pruning gives the same result with same seeding
        """
        # initialize two random generator with same seed
        first_random_generator = random.Random()
        first_random_generator.seed(seed)

        second_random_generator = random.Random()
        second_random_generator.seed(seed)

        # prune graph using the two different random generators
        first_pruned_graph = graph.rand_prune(
            pruning_factor, random_generator=first_random_generator)
        second_pruned_graph = graph.rand_prune(
            pruning_factor, random_generator=second_random_generator)

        assert first_pruned_graph == second_pruned_graph

    @staticmethod
    def test_dualize_relations(graph: DirectedGraph,
                               expected_graph: DirectedGraph) -> None:
        """
        test dual property
        """
        result = graph.dualize_relations()
        assert result == expected_graph
コード例 #14
0
class TestDataset:
    """
    Unit tests for Dataset class
    entity2id and relation2id are provided and not generated through Dataset
    due to difficulty of managing multithreading randomness and mapping consistency.
    """
    params: Dict[str, List[Any]] = {
        'test_dataset': [
            dict(initializer_dict={
                'wn18_graph': (b'a\t_member_of_domain_usage\tb\n'
                               b'b\t_verb_group\tc\n'
                               b'a\t_member_of_domain_region\td\n'
                               b'd\t_member_meronym\tc\n'),
                'w2v_dic': {
                    'a': [0.55, 0.45, 0.35],
                    'b': [0.55, 0.45, 0.35],
                    'c': [0.55, 0.45, 0.35],
                    'd': [0.55, 0.45, 0.35]
                },
                'entity2id':
                b'a\t0\nb\t1\nc\t2\nd\t3\n',
                'relation2id': (b'_member_of_domain_usage\t0\n'
                                b'_verb_group\t1\n'
                                b'_member_of_domain_region\t2\n'
                                b'_member_meronym\t3\n')
            },
                 expected_graph=DirectedGraph(((0, 1, {
                     0: None
                 }), (1, 2, {
                     1: None
                 }), (0, 3, {
                     2: None
                 }), (3, 2, {
                     3: None
                 })))),
        ]
    }

    @staticmethod
    def test_dataset(initializer_dict: Dict, expected_graph: DirectedGraph):
        """Check that wn18 dataset format is read and formated properly.
        Current test only covers reading embedding vectors from a file
        (e.g. word2vec pre-computed embeddings). Default randomly generated embeddings
        are not tested due to its trivial implementation and intrinsic randomness,
        that is more difficult to test.

        Args:
            initializer_dict (Dict): String representing wn18 dataset format
            expected_graph (DirectedGraph): Expected graph output
            TODO: add edgecases like plural empty lines, escape characters etc.
        """
        with TempDirectory() as d:
            d.write(raw_dataset_pat['train'], initializer_dict['wn18_graph'])
            d.write(raw_dataset_pat['valid'], initializer_dict['wn18_graph'])
            d.write(raw_dataset_pat['test'], initializer_dict['wn18_graph'])
            d.write(preproc_pat['entity2id'], initializer_dict['entity2id'])
            d.write(preproc_pat['relation2id'],
                    initializer_dict['relation2id'])
            w2v_dict_path = os.path.join(d.path, preproc_pat['word2vec_short'])
            with open(w2v_dict_path, 'wb') as f:
                pkl.dump(initializer_dict['w2v_dic'], f)
            ds: Dataset = Dataset(d.path, 'wn18', node2vec_path=w2v_dict_path)
            graph: DirectedGraph = DirectedGraph(ds.train)
            assert str(graph) == str(expected_graph)
            graph = DirectedGraph(ds.valid)
            assert str(graph) == str(expected_graph)
            graph = DirectedGraph(ds.test)
            assert str(graph) == str(expected_graph)