コード例 #1
0
def calc_outcome_adaptive_lasso_single_lambda(A, Y, X, Lambda,
                                              gamma_convergence_factor):
    """Calculate ATE with the outcome adaptive lasso"""
    n = A.shape[0]  # number of samples
    # extract gamma according to Lambda and gamma_convergence_factor
    gamma = 2 * (1 + gamma_convergence_factor - log(Lambda, n))
    # fit regression from covariates X and exposure A to outcome Y
    lr = LinearRegression(fit_intercept=True).fit(
        np.hstack([A.values.reshape(-1, 1), X]), Y)
    # extract the coefficients of the covariates
    x_coefs = lr.coef_[1:]
    # calculate outcome adaptive penalization weights
    weights = (np.abs(x_coefs))**(-1 * gamma)
    # apply the penalization to the covariates themselves
    X_w = X / weights
    # fit logistic propensity score model from penalized covariates to the exposure
    ipw = IPW(LogisticRegression(solver='liblinear',
                                 penalty='l1',
                                 C=1 / Lambda),
              use_stabilized=False).fit(X_w, A)
    # compute inverse propensity weighting and calculate ATE
    weights = ipw.compute_weights(X_w, A)
    outcomes = ipw.estimate_population_outcome(X_w, A, Y, w=weights)
    effect = ipw.estimate_effect(outcomes[1], outcomes[0])
    return effect, x_coefs, weights
コード例 #2
0
def calc_ate_vanilla_ipw(A, Y, X):
    ipw = IPW(LogisticRegression(solver='liblinear',
                                 penalty='l1',
                                 C=1e2,
                                 max_iter=500),
              use_stabilized=True).fit(X, A)
    weights = ipw.compute_weights(X, A)
    outcomes = ipw.estimate_population_outcome(X, A, Y, w=weights)
    effect = ipw.estimate_effect(outcomes[1], outcomes[0])
    return effect[0]
コード例 #3
0
ファイル: test_ipw.py プロジェクト: IBM/causallib
class TestIPW(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        # Data:
        X, a = make_classification(n_features=1,
                                   n_informative=1,
                                   n_redundant=0,
                                   n_repeated=0,
                                   n_classes=2,
                                   n_clusters_per_class=1,
                                   flip_y=0.0,
                                   class_sep=10.0)
        cls.data_r_100 = {"X": pd.DataFrame(X), "a": pd.Series(a)}
        X, a = make_classification(n_features=1,
                                   n_informative=1,
                                   n_redundant=0,
                                   n_repeated=0,
                                   n_classes=2,
                                   n_clusters_per_class=1,
                                   flip_y=0.2,
                                   class_sep=10.0)
        cls.data_r_80 = {"X": pd.DataFrame(X), "a": pd.Series(a)}

        # Data that maps x=0->a=0 and x=1->a=1:
        X = pd.Series([0] * 50 + [1] * 50)
        cls.data_cat_r_100 = {"X": X.to_frame(), "a": X}

        # Data that maps x=0->a=0 and x=1->a=1, but 10% of x=0->a=1 and 10% of x=1->a=0:
        X = pd.Series([0] * 40 + [1] * 10 + [1] * 40 + [0] * 10).to_frame()
        a = pd.Series([0] * 50 + [1] * 50)
        cls.data_cat_r_80 = {"X": X, "a": a}

        # Avoids regularization of the model:
        cls.estimator = IPW(LogisticRegression(C=1e6, solver='lbfgs'),
                            clip_min=0.05,
                            clip_max=0.95,
                            use_stabilized=False)

    def setUp(self):
        self.estimator.fit(self.data_r_100["X"], self.data_r_100["a"])

    def test_is_fitted(self):
        self.assertTrue(hasattr(self.estimator.learner, "coef_"))

    def test_weight_matrix_vector_matching(self):
        a = self.data_r_100["a"]
        p_vec = self.estimator.compute_weights(self.data_r_100["X"], a)
        p_mat = self.estimator.compute_weight_matrix(self.data_r_100["X"], a)
        self.assertEqual(p_vec.size, p_mat.shape[0])
        for i in range(a.shape[0]):
            self.assertAlmostEqual(p_mat.loc[i, a[i]], p_vec[i])

    def test_weight_sizes(self):
        a = self.data_r_100["a"]
        with self.subTest("Weight vector size"):
            p = self.estimator.compute_weights(self.data_r_100["X"], a)
            self.assertEqual(len(p.shape), 1)  # vector has no second axis
            self.assertEqual(p.shape[0], a.shape[0])

        with self.subTest("Weight matrix size"):
            p = self.estimator.compute_weight_matrix(self.data_r_100["X"], a)
            self.assertEqual(len(p.shape), 2)  # Matrix has two dimensions
            self.assertEqual(p.shape[0], a.shape[0])
            self.assertEqual(p.shape[1], np.unique(a).size)

    def ensure_truncation(self, test_weights):
        with self.subTest("Estimator initialization parameters"):
            p = self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"])
            if test_weights:
                p = self.estimator.compute_weights(self.data_r_80["X"],
                                                   self.data_r_80["a"]).pow(-1)

            self.assertAlmostEqual(p.min(), 0.05)
            self.assertAlmostEqual(p.max(), 1 - 0.05)

        with self.subTest("Overwrite parameters in compute_weights"):
            p = self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.1,
                                                  clip_max=0.9)
            if test_weights:
                p = self.estimator.compute_weights(self.data_r_80["X"],
                                                   self.data_r_80["a"],
                                                   clip_min=0.1,
                                                   clip_max=0.9).pow(-1)
            self.assertAlmostEqual(p.min(), 0.1)
            self.assertAlmostEqual(p.max(), 1 - 0.1)

        with self.subTest("Test asymmetric clipping"):
            p = self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.2,
                                                  clip_max=0.9)
            if test_weights:
                p = self.estimator.compute_weights(self.data_r_80["X"],
                                                   self.data_r_80["a"],
                                                   clip_min=0.2,
                                                   clip_max=0.9).pow(-1)
            self.assertAlmostEqual(p.min(), 0.2)
            self.assertAlmostEqual(p.max(), 0.9)

        with self.subTest(
                "Test calculation of fraction of clipped observations"):
            probabilities = pd.DataFrame()
            probabilities['col1'] = [
                0.01, 0.02, 0.03, 0.05, 0.3, 0.6, 0.9, 0.95, 0.99, 0.99
            ]
            probabilities['col2'] = [
                0.99, 0.98, 0.97, 0.95, 0.7, 0.4, 0.1, 0.05, 0.01, 0.01
            ]
            frac = self.estimator._IPW__count_truncated(probabilities,
                                                        clip_min=0.05,
                                                        clip_max=0.95)
            self.assertAlmostEqual(frac, 0.5)

        with self.subTest(
                "Test calculation of fraction of clipped observations - no clipping"
        ):
            probabilities = pd.DataFrame()
            probabilities['col1'] = [0.0, 0.0, 0.0, 1.0, 1.0]
            probabilities['col2'] = [1.0, 1.0, 1.0, 0.0, 0.0]
            frac = self.estimator._IPW__count_truncated(probabilities,
                                                        clip_min=0.0,
                                                        clip_max=1.0)
            self.assertAlmostEqual(frac, 0.0)

    def test_weight_truncation(self):
        self.ensure_truncation(test_weights=True)

    def test_propensity_truncation(self):
        self.ensure_truncation(test_weights=False)

        with self.subTest("Illegal truncation values assertion on compute"):
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.6)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_max=0.4)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.6,
                                                  clip_max=0.9)
            with self.assertRaises(AssertionError):
                self.estimator.compute_propensity(self.data_r_80["X"],
                                                  self.data_r_80["a"],
                                                  clip_min=0.1,
                                                  clip_max=0.4)

        with self.subTest(
                "Illegal truncation values assertion on initialization"):
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.6)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_max=0.4)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.1, clip_max=0.4)
            with self.assertRaises(AssertionError):
                IPW(LogisticRegression(), clip_min=0.6, clip_max=0.9)

    def test_weights_sanity_check(self):
        with self.subTest(
                "Linearly separable X should have perfectly predicted propensity score"
        ):
            p = self.estimator.compute_weights(self.data_r_100["X"],
                                               self.data_r_100["a"],
                                               clip_min=0.0,
                                               clip_max=1.0).pow(-1)
            np.testing.assert_array_almost_equal(p, np.ones_like(p), decimal=3)

        with self.subTest(
                "Train on bijection X|a data and predict on data where q% are flipped"
        ):
            # Train on data that maps x=0->a=0 and x=1->a=1:
            self.estimator.fit(self.data_cat_r_100["X"],
                               self.data_cat_r_100["a"])
            # Predict on a set with mis-mapping: 10% of x=0 have a=1 and 10% of x=1 have a=0:
            p = self.estimator.compute_weights(self.data_cat_r_80["X"],
                                               self.data_cat_r_80["a"],
                                               clip_min=0.0,
                                               clip_max=1.0).pow(-1)
            # Extract subjects with mismatching X-a values:
            mis_assigned = np.logical_xor(self.data_cat_r_80["X"].iloc[:, 0],
                                          self.data_cat_r_80["a"])
            # See they have the same rate:
            self.assertAlmostEqual(p.mean(), 1.0 - mis_assigned.mean(), 4)
            np.testing.assert_almost_equal(p.mean(),
                                           1.0 - mis_assigned.mean(),
                                           decimal=4)

    def test_forcing_probability_learner(self):
        from sklearn.svm import SVC  # Arbitrary model with decision_function instead of predict_proba
        with self.assertRaises(AttributeError):
            IPW(SVC())

    def test_pipeline_learner(self):
        from sklearn.preprocessing import StandardScaler, MinMaxScaler
        from sklearn.pipeline import make_pipeline
        learner = make_pipeline(StandardScaler(), MinMaxScaler(),
                                LogisticRegression(solver='lbfgs'))
        with self.subTest("Test initialization with pipeline learner"):
            self.estimator = IPW(learner)
            self.assertTrue(True)  # Dummy assert for not thrown exception

        with self.subTest("Test fit with pipeline learner"):
            self.estimator.fit(self.data_r_100["X"], self.data_r_100["a"])
            self.assertTrue(True)  # Dummy assert for not thrown exception

        with self.subTest("Test 'predict' with pipeline learner"):
            self.estimator.compute_weights(self.data_r_100["X"],
                                           self.data_r_100["a"])
            self.assertTrue(True)  # Dummy assert for not thrown exception