コード例 #1
0
 def calc_base(self):
     """
     Call functions for the current_year.  This involves
     updating depreciation methods, computing the npv of depreciation
     (z), and computing the cost of capital (rho) and then calling
     the calc_all() function to do computations that dependon rho and
     z.
     """
     # conducts static analysis of Calculator object for current_year
     self.__assets.df = update_depr_methods(self.__assets.df,
                                            self.__p)
     dfs = {'c': self.__assets.df[
            self.__assets.df['tax_treat'] == 'corporate'].copy(),
            'nc': self.__assets.df[
            self.__assets.df['tax_treat'] == 'non-corporate'].copy()}
     # separate into corp and non-corp dataframe here
     for t in self.__p.entity_list:
         for f in self.__p.financing_list:
             dfs[t]['z_' + str(f)] = npv_tax_depr(
                 dfs[t], self.__p.r[t][f], self.__p.inflation_rate,
                 self.__p.land_expensing)
             dfs[t]['rho_' + str(f)] = eq_coc(
                 dfs[t]['delta'], dfs[t]['z_' + str(f)],
                 self.__p.property_tax,
                 self.__p.u[t], self.__p.inv_tax_credit,
                 self.__p.inflation_rate, self.__p.r[t][f])
             if not self.__p.inventory_expensing:
                 idx = dfs[t]['asset_name'] == 'Inventories'
                 dfs[t].loc[idx, 'rho_' + str(f)] = eq_coc_inventory(
                     self.__p.u[t], self.__p.phi, self.__p.Y_v,
                     self.__p.inflation_rate, self.__p.r[t][f])
     self.__assets.df = pd.concat(dfs, ignore_index=True, copy=True,
                                  sort=True)
コード例 #2
0
ファイル: test_calcfunctions.py プロジェクト: jdebacker/B-Tax
def test_npv_tax_depr(df, r, pi, land_expensing, expected_df):
    test_df = cf.npv_tax_depr(df, r, pi, land_expensing)
    print('Types = ', type(test_df), type(expected_df))
    assert_series_equal(test_df, expected_df)
コード例 #3
0
def test_npv_tax_depr(df, r, pi, land_expensing, expected_df):
    test_df = cf.npv_tax_depr(df, r, pi, land_expensing)
    print('Types = ', type(test_df), type(expected_df))
    assert_series_equal(test_df, expected_df)