コード例 #1
0
 def testLoadProjection(self):
     xtekReader = XTEKReader(self.filename)
     pixels = xtekReader.loadProjection()
     self.assertEqual(pixels.shape, (63, 500, 500), "projections shape doesn't match")
コード例 #2
0
 def testLoad(self):
     xtekReader = XTEKReader(self.filename)
     self.assertEqual(xtekReader.geometry.pixel_num_h, 500, "Detector pixel X size is not correct")
     self.assertEqual(xtekReader.geometry.pixel_num_v, 500, "Detector pixel Y size is not correct")
     self.assertEqual(xtekReader.geometry.dist_source_center, -80.6392412185669, "Distance from source to center is not correct")
     self.assertEqual(xtekReader.geometry.dist_center_detector, (1007.006 - 80.6392412185669), "Distance from center to detector is not correct")
コード例 #3
0
 def testReadAngles(self):    
     xtekReader = XTEKReader(self.filename)
     angles = xtekReader.readAngles()
     self.assertEqual(angles.shape, (63,), "Angles doesn't match")
     self.assertAlmostEqual(angles[46], -085.717, 3, "46th Angles doesn't match")
コード例 #4
0
# https://zenodo.org/record/16474
# The filename with full path to the .xtekct file should be given as string 
# input to XTEKReader to  load in the data.

# Do all imports
from ccpi.io.reader import XTEKReader
import numpy as np
import matplotlib.pyplot as plt
from ccpi.framework import ImageGeometry, AcquisitionData, ImageData
from ccpi.astra.ops import AstraProjector3DSimple
from ccpi.optimisation.algs import CGLS

import numpy

# Set up reader object and read the data
datareader = XTEKReader("REPLACE_THIS_BY_PATH_TO_DATASET/SophiaBeads_256_averaged.xtekct")
data = datareader.get_acquisition_data()

# Crop data and fix dimension labels
data = AcquisitionData(data.array[:,:,901:1101],
                            geometry=data.geometry,
                            dimension_labels=['angle','horizontal','vertical'])
data.geometry.pixel_num_v = 200

# Scale and negative-log transform
data.array = -np.log(data.as_array()/60000.0)

# Apply centering correction by zero padding, amount found manually
cor_pad = 30
data_pad = np.zeros((data.shape[0],data.shape[1]+cor_pad,data.shape[2]))
data_pad[:,cor_pad:,:] = data.array