コード例 #1
0
 def test_FISTA_cvx(self):
     
     if False:
         if not cvx_not_installable:
             try:
                 # Problem data.
                 m = 30
                 n = 20
                 np.random.seed(1)
                 Amat = np.random.randn(m, n)
                 A = LinearOperatorMatrix(Amat)
                 bmat = np.random.randn(m)
                 bmat.shape = (bmat.shape[0], 1)
 
                 # A = Identity()
                 # Change n to equal to m.
 
                 #b = DataContainer(bmat)
                 vg = VectorGeometry(m)
 
                 b = vg.allocate('random')
 
                 # Regularization parameter
                 lam = 10
                 opt = {'memopt': True}
                 # Create object instances with the test data A and b.
                 f = LeastSquares(A, b, c=0.5)
                 g0 = ZeroFunction()
 
                 # Initial guess
                 #x_init = DataContainer(np.zeros((n, 1)))
                 x_init = vg.allocate()
                 f.gradient(x_init, out = x_init)
 
                 # Run FISTA for least squares plus zero function.
                 #x_fista0, it0, timing0, criter0 = FISTA(x_init, f, g0, opt=opt)
                 fa = FISTA(x_init=x_init, f=f, g=g0)
                 fa.max_iteration = 10
                 fa.run(10)
                 
                 # Print solution and final objective/criterion value for comparison
                 print("FISTA least squares plus zero function solution and objective value:")
                 print(fa.get_output())
                 print(fa.get_last_objective())
 
                 # Compare to CVXPY
 
                 # Construct the problem.
                 x0 = Variable(n)
                 objective0 = Minimize(0.5*sum_squares(Amat*x0 - bmat.T[0]))
                 prob0 = Problem(objective0)
 
                 # The optimal objective is returned by prob.solve().
                 result0 = prob0.solve(verbose=False, solver=SCS, eps=1e-9)
 
                 # The optimal solution for x is stored in x.value and optimal objective value
                 # is in result as well as in objective.value
                 print("CVXPY least squares plus zero function solution and objective value:")
                 print(x0.value)
                 print(objective0.value)
                 self.assertNumpyArrayAlmostEqual(
                     numpy.squeeze(x_fista0.array), x0.value, 6)
             except SolverError as se:
                 print (str(se))
                 self.assertTrue(True)
         else:
             self.assertTrue(cvx_not_installable)
コード例 #2
0
    def stest_FISTA_Norm1_cvx(self):
        if not cvx_not_installable:
            try:
                opt = {'memopt': True}
                # Problem data.
                m = 30
                n = 20
                np.random.seed(1)
                Amat = np.random.randn(m, n)
                A = LinearOperatorMatrix(Amat)
                bmat = np.random.randn(m)
                #bmat.shape = (bmat.shape[0], 1)

                # A = Identity()
                # Change n to equal to m.
                vgb = VectorGeometry(m)
                vgx = VectorGeometry(n)
                b = vgb.allocate()
                b.fill(bmat)
                #b = DataContainer(bmat)

                # Regularization parameter
                lam = 10
                opt = {'memopt': True}
                # Create object instances with the test data A and b.
                f = LeastSquares(A, b, c=0.5)
                g0 = ZeroFunction()

                # Initial guess
                #x_init = DataContainer(np.zeros((n, 1)))
                x_init = vgx.allocate()

                # Create 1-norm object instance
                g1 = lam * L1Norm()

                g1(x_init)
                g1.prox(x_init, 0.02)

                # Combine with least squares and solve using generic FISTA implementation
                #x_fista1, it1, timing1, criter1 = FISTA(x_init, f, g1, opt=opt)
                fa = FISTA(x_init=x_init, f=f, g=g1)
                fa.max_iteration = 10
                fa.run(10)
                

                # Print for comparison
                print("FISTA least squares plus 1-norm solution and objective value:")
                print(fa.get_output())
                print(fa.get_last_objective())

                # Compare to CVXPY

                # Construct the problem.
                x1 = Variable(n)
                objective1 = Minimize(
                    0.5*sum_squares(Amat*x1 - bmat.T[0]) + lam*norm(x1, 1))
                prob1 = Problem(objective1)

                # The optimal objective is returned by prob.solve().
                result1 = prob1.solve(verbose=False, solver=SCS, eps=1e-9)

                # The optimal solution for x is stored in x.value and optimal objective value
                # is in result as well as in objective.value
                print("CVXPY least squares plus 1-norm solution and objective value:")
                print(x1.value)
                print(objective1.value)

                self.assertNumpyArrayAlmostEqual(
                    numpy.squeeze(x_fista1.array), x1.value, 6)
            except SolverError as se:
                print (str(se))
                self.assertTrue(True)
        else:
            self.assertTrue(cvx_not_installable)