コード例 #1
0
    def generate_mock_rms_fc_list(self,
                                  n_bins=None,
                                  d_min=None,
                                  map_model_manager=None,
                                  model=None,
                                  out=null_out()):
        mmm = map_model_manager
        if not model:
            from cctbx.development.create_models_or_maps import generate_model
            model = generate_model(n_residues=100, b_iso=0, log=null_out())
        # shift the model and return it with new crystal_symmetry
        from cctbx.maptbx.box import shift_and_box_model
        model = shift_and_box_model(model=model,
                                    crystal_symmetry=mmm.crystal_symmetry())
        model.set_shift_cart((0, 0, 0))
        model = mmm.remove_model_outside_map(model=model,
                                             boundary=0,
                                             return_as_new_model=True)
        map_id_model_map = 'map_for_mock_data'
        out_sav = mmm.log
        mmm.set_log(null_out())
        mmm.generate_map(model=model,
                         gridding=mmm.get_any_map_manager().map_data().all(),
                         d_min=d_min,
                         map_id=map_id_model_map)

        map_coeffs = mmm.get_map_manager_by_id(
            map_id_model_map).map_as_fourier_coefficients(d_min=d_min)
        mmm.remove_map_manager_by_id(map_id=map_id_model_map)
        mmm.set_log(out_sav)
        f_array = get_map_coeffs_as_fp_phi(map_coeffs,
                                           n_bins=n_bins,
                                           d_min=d_min).f_array
        rms_fc_list = flex.double()
        for i_bin in f_array.binner().range_used():
            sel = f_array.binner().selection(i_bin)
            fc = map_coeffs.select(sel)
            f_array_fc = map_coeffs_to_fp(fc)
            rms_fc = f_array_fc.data().norm()
            rms_fc_list.append(rms_fc)
        self.rms_fc_list = rms_fc_list
コード例 #2
0
    def generate_mock_rms_fc_list(self,
                                  n_bins=None,
                                  d_min=None,
                                  map_model_manager=None,
                                  model=None,
                                  k_sol=None,
                                  b_sol=None,
                                  n_bins_use=None,
                                  out=null_out()):
        mmm = map_model_manager
        if not model:
            from cctbx.development.create_models_or_maps import generate_model
            model = generate_model(n_residues=100, b_iso=0, log=null_out())
        # shift the model and return it with new crystal_symmetry
        from cctbx.maptbx.box import shift_and_box_model
        model = shift_and_box_model(model=model,
                                    crystal_symmetry=mmm.crystal_symmetry())
        model.set_shift_cart((0, 0, 0))
        model = mmm.remove_model_outside_map(model=model,
                                             boundary=0,
                                             return_as_new_model=True)
        map_id_model_map = 'map_for_mock_data'
        out_sav = mmm.log
        mmm.set_log(null_out())
        mmm.generate_map(model=model,
                         gridding=mmm.get_any_map_manager().map_data().all(),
                         d_min=d_min,
                         k_sol=k_sol,
                         b_sol=b_sol,
                         map_id=map_id_model_map)

        self.rms_fc_list = mmm.get_rms_f_list(map_id=map_id_model_map,
                                              d_min=d_min,
                                              n_bins=n_bins).rms_f_list
        self.n_bins_use = n_bins_use  # just save it
        mmm.remove_map_manager_by_id(map_id=map_id_model_map)
        mmm.set_log(out_sav)
コード例 #3
0
def exercise():
    """Test prepare_map_for_docking using data with known errors."""

    # Generate two half-maps with same anisotropic signal, independent anisotropic
    # noise. Test to see how well optimal map coefficients are estimated.

    # Start by working out how large the padding will have to be so that
    # starting automatically-generated map will be large enough to contain
    # sphere with room to spare around model.
    n_residues = 25
    d_min = 2.5
    from cctbx.development.create_models_or_maps import generate_model
    test_model = generate_model(n_residues=n_residues)
    sites_cart = test_model.get_sites_cart()
    cart_min = flex.double(sites_cart.min())
    cart_max = flex.double(sites_cart.max())
    box_centre = (cart_min + cart_max) / 2
    dsqrmax = flex.max((sites_cart - tuple(box_centre)).norms())**2
    model_radius = math.sqrt(dsqrmax)
    min_model_extent = flex.min(cart_max - cart_min)
    pad_to_allow_cube = model_radius - min_model_extent / 2
    # Extra space needed for eventual masking
    boundary_to_smoothing_ratio = 2
    soft_mask_radius = d_min
    padding = soft_mask_radius * boundary_to_smoothing_ratio
    box_cushion = padding + pad_to_allow_cube + d_min  # A bit extra

    # Make map in box big enough to cut out cube containing sphere
    mmm = map_model_manager()
    mmm.generate_map(n_residues=n_residues,
                     d_min=d_min,
                     k_sol=0.1,
                     b_sol=50.,
                     box_cushion=box_cushion)
    # Keep copy of perfect map for tests of success
    mm_start = mmm.map_manager().deep_copy()
    mmm.add_map_manager_by_id(mm_start, 'perfect_map')
    model = mmm.model()
    sites_cart = model.get_sites_cart()
    cart_min = flex.double(sites_cart.min())
    cart_max = flex.double(sites_cart.max())

    # Turn starting map into map coeffs for the signal
    ucpars = mmm.map_manager().unit_cell().parameters()
    d_max = max(ucpars[0], ucpars[1], ucpars[2])
    start_map_coeffs = mmm.map_as_fourier_coefficients(d_min=d_min,
                                                       d_max=d_max)

    # Apply anisotropic scaling to map coeffs
    b_target = (100., 200., 300., -50., 50., 100.)
    u_star_s = adptbx.u_cart_as_u_star(start_map_coeffs.unit_cell(),
                                       adptbx.b_as_u(b_target))
    # b_model = (30.,30.,30.,0.,0.,0.)  # All atoms in model have B=30
    # b_expected = list((flex.double(b_target) + flex.double(b_model)))
    scaled_map_coeffs = start_map_coeffs.apply_debye_waller_factors(
        u_star=u_star_s)

    # Generate map coefficient errors for first half-map from complex normal
    # distribution
    b_target_e = (0., 0., 0., -50., -50., 100.)  # Anisotropy for error terms
    u_star_e = adptbx.u_cart_as_u_star(start_map_coeffs.unit_cell(),
                                       adptbx.b_as_u(b_target_e))
    se_target = 10.  # Target for SigmaE variance term
    rsigma = math.sqrt(se_target / 2.)
    jj = 0. + 1.j  # Define I for generating complex numbers
    random_complexes1 = flex.complex_double()
    ncoeffs = start_map_coeffs.size()
    random.seed(123457)  # Make runs reproducible
    for i in range(ncoeffs):
        random_complexes1.append(
            random.gauss(0., rsigma) + random.gauss(0., rsigma) * jj)
    rc1_miller = start_map_coeffs.customized_copy(data=random_complexes1)
    mc1_delta = rc1_miller.apply_debye_waller_factors(u_star=u_star_e)
    map1_coeffs = scaled_map_coeffs.customized_copy(
        data=scaled_map_coeffs.data() + mc1_delta.data())

    # Repeat for second half map with independent errors from same distribution
    random_complexes2 = flex.complex_double()
    for i in range(ncoeffs):
        random_complexes2.append(
            random.gauss(0., rsigma) + random.gauss(0., rsigma) * jj)
    rc2_miller = start_map_coeffs.customized_copy(data=random_complexes2)
    mc2_delta = rc2_miller.apply_debye_waller_factors(u_star=u_star_e)
    map2_coeffs = scaled_map_coeffs.customized_copy(
        data=scaled_map_coeffs.data() + mc2_delta.data())

    # mmm.write_model("fake_map.pdb")
    mmm.add_map_from_fourier_coefficients(map1_coeffs, map_id='map_manager_1')
    mmm.add_map_from_fourier_coefficients(map2_coeffs, map_id='map_manager_2')
    # Replace original map_manager with mean of half-maps
    mm_mean_data = (mmm.map_manager_1().map_data() +
                    mmm.map_manager_2().map_data()) / 2
    mmm.map_manager().set_map_data(map_data=mm_mean_data)
    # Add mask map for ordered component of map
    protein_mw = n_residues * 110.  # MW from model would be better...
    nucleic_mw = None
    mask_id = 'ordered_volume_mask'
    add_ordered_volume_mask(mmm,
                            d_min,
                            protein_mw=protein_mw,
                            nucleic_mw=nucleic_mw,
                            map_id_out=mask_id)
    box_centre = tuple(flex.double((ucpars[0], ucpars[1], ucpars[2])) / 2)
    # Now refine to assess parameters describing map errors
    results = assess_cryoem_errors(mmm,
                                   d_min,
                                   sphere_cent=tuple(box_centre),
                                   radius=model_radius + d_min,
                                   verbosity=0)

    # resultsdict = results.resultsdict
    # b_refined_a = resultsdict["a_baniso"]
    # print("\nIdeal A tensor as Baniso: ", b_expected)
    # print("Refined A tensor as Baniso", b_refined_a)

    # Note that all maps have been cut out with a spherical mask, so compare using these
    new_mmm = results.new_mmm
    perfect_mapCC = new_mmm.map_model_cc(map_id='perfect_map')
    mapCC = new_mmm.map_model_cc(map_id='map_manager_wtd')  # Achieved map
    start_mapCC = new_mmm.map_model_cc(
    )  # Starting map with noise and anisotropy

    mc_perfect = new_mmm.map_as_fourier_coefficients(d_min=d_min,
                                                     d_max=d_max,
                                                     map_id='perfect_map')
    mc_achieved = new_mmm.map_as_fourier_coefficients(d_min=d_min,
                                                      d_max=d_max,
                                                      map_id='map_manager_wtd')

    # Compare with results using theoretically perfect error parameters to compute
    # ideal map coefficients.
    sigmaS_terms = flex.pow2(get_power_spectrum(
        mc_perfect))  # Actual signal power before anisotropy
    mc_start = new_mmm.map_as_fourier_coefficients(d_min=d_min, d_max=d_max)
    eE_ideal = mc_start.deep_copy()
    ones_array = flex.double(eE_ideal.size(), 1)
    all_ones = eE_ideal.customized_copy(data=ones_array)
    u_star_s2 = tuple(flex.double(u_star_s) *
                      2.)  # Square anisotropy for signal power calc
    sigmaS_terms = sigmaS_terms * all_ones.apply_debye_waller_factors(
        u_star=u_star_s2).data()  # Corrected for anisotropy

    u_star_e2 = tuple(flex.double(u_star_e) * 2.)
    sigmaE_terms = all_ones.apply_debye_waller_factors(
        u_star=u_star_e2).data() * se_target

    scale_terms = 1. / flex.sqrt(sigmaS_terms + sigmaE_terms / 2.)
    dobs_terms = 1. / flex.sqrt(1. + sigmaE_terms / (2 * sigmaS_terms))
    mc_ideal = eE_ideal.customized_copy(data=eE_ideal.data() * scale_terms *
                                        dobs_terms)
    # write_mtz(mc_achieved,"achieved_map.mtz","achieved")
    # write_mtz(mc_ideal,"ideal_map.mtz","ideal")

    mapCC_ideal_achieved = mc_ideal.map_correlation(other=mc_achieved)
    # print("CC between ideal and achieved maps:",mapCC_ideal_achieved)
    assert (mapCC_ideal_achieved > 0.92)
    new_mmm.add_map_from_fourier_coefficients(mc_ideal, map_id='ideal_map')
    ideal_mapCC = new_mmm.map_model_cc(map_id='ideal_map')
    # print("Perfect, starting, ideal and achieved mapCC: ", perfect_mapCC, start_mapCC, ideal_mapCC, mapCC)
    assert (mapCC > 0.98 * ideal_mapCC)
コード例 #4
0
def exercise():
  """Test prepare_map_for_docking using data with known errors."""

  # Generate two half-maps with same anisotropic signal,
  # independent anisotropic noise. Test to see if
  # simulation parameters are recovered.

  # Start by working out how large the padding will have to be so that
  # starting automatically-generated map will be large enough to contain
  # sphere with room to spare around model.
  n_residues = 25
  d_min = 2.5
  from cctbx.development.create_models_or_maps import generate_model
  test_model = generate_model(n_residues=n_residues)
  sites_cart = test_model.get_sites_cart()
  cart_min = flex.double(sites_cart.min())
  cart_max = flex.double(sites_cart.max())
  box_centre = (cart_min+cart_max)/2
  dsqrmax = flex.max( (sites_cart - tuple(box_centre)).norms() )**2
  model_radius = math.sqrt(dsqrmax)
  min_model_extent = flex.min(cart_max - cart_min)
  pad_to_allow_cube = model_radius - min_model_extent/2
  # Extra space needed for eventual masking
  boundary_to_smoothing_ratio = 2
  soft_mask_radius = d_min
  padding = soft_mask_radius * boundary_to_smoothing_ratio
  box_cushion = padding + pad_to_allow_cube

  # Make map in box big enough to cut out cube containing sphere
  mmm = map_model_manager()
  mmm.generate_map(
      n_residues=n_residues, d_min=d_min, k_sol=0.1, b_sol=50.,
      box_cushion=box_cushion)
  model = mmm.model()
  sites_cart = model.get_sites_cart()
  cart_min = flex.double(sites_cart.min())
  cart_max = flex.double(sites_cart.max())

  # Turn starting map into map coeffs for the signal
  ucpars = mmm.map_manager().unit_cell().parameters()
  d_max=max(ucpars[0], ucpars[1], ucpars[2])
  start_map_coeffs = mmm.map_as_fourier_coefficients(
      d_min=d_min, d_max=d_max)

  # Apply anisotropic scaling to map coeffs
  b_target = (100.,200.,300.,-50.,50.,100.)
  b_model = (30.,30.,30.,0.,0.,0.)  # All atoms in model have B=30
  u_star = adptbx.u_cart_as_u_star(
      start_map_coeffs.unit_cell(), adptbx.b_as_u(b_target))
  b_expected = list((flex.double(b_target) + flex.double(b_model)))
  scaled_map_coeffs = start_map_coeffs.apply_debye_waller_factors(u_star=u_star)

  # Generate map coefficient errors for first half-map from complex normal
  # distribution
  b_target_e = (0.,0.,0.,-50.,-50.,100.) # Anisotropy for error terms
  u_star_e = adptbx.u_cart_as_u_star(
      start_map_coeffs.unit_cell(), adptbx.b_as_u(b_target_e))
  se_target = 1. # Target for SigmaE variance term
  rsigma = math.sqrt(se_target / 2.)
  jj = 0.+1.j  # Define I for generating complex numbers
  random_complexes1 = flex.complex_double()
  ncoeffs=start_map_coeffs.size()
  random.seed(123457) # Make runs reproducible
  for i in range(ncoeffs):
    random_complexes1.append(random.gauss(0.,rsigma) + random.gauss(0.,rsigma)*jj)
  rc1_miller = start_map_coeffs.customized_copy(data=random_complexes1)
  mc1_delta = rc1_miller.apply_debye_waller_factors(u_star=u_star_e)
  map1_coeffs = scaled_map_coeffs.customized_copy(
    data=scaled_map_coeffs.data() + mc1_delta.data())

  # Repeat for second half map with independent errors from same distribution
  random_complexes2 = flex.complex_double()
  for i in range(ncoeffs):
    random_complexes2.append(random.gauss(0.,rsigma) + random.gauss(0.,rsigma)*jj)
  rc2_miller = start_map_coeffs.customized_copy(data=random_complexes2)
  mc2_delta = rc2_miller.apply_debye_waller_factors(u_star=u_star_e)
  map2_coeffs = scaled_map_coeffs.customized_copy(
    data=scaled_map_coeffs.data() + mc2_delta.data())

  mmm.add_map_from_fourier_coefficients(
      map1_coeffs, map_id = 'map_manager_1')
  mmm.add_map_from_fourier_coefficients(
      map2_coeffs, map_id = 'map_manager_2')

  radius = model_radius + 5. # Sphere as large as possible to allow masking
  results = run_refine_cryoem_errors(
      mmm, d_min,
      sphere_cent=tuple(box_centre), radius=radius, verbosity=0)

  resultsdict = results.resultsdict
  b_refined_a = resultsdict["a_baniso"]
  # print("\nIdeal A tensor as Baniso: ", b_expected)
  # print("Refined A tensor as Baniso", b_refined_a)
  b_refined_e = resultsdict["sigmaE_baniso"] # Note: refers to intensity scale
  # print("\nIdeal SigmaE tensor as Baniso: ",list(flex.double(b_target_e*2)))
  # print("Refined SigmaE tensor as Baniso", b_refined_e)
  for i in range(6):
    assert(approx_equal(b_refined_a[i],b_expected[i], eps=25))
    assert(approx_equal(b_refined_e[i],2*b_target_e[i], eps=25))