# apply dust particles if APPLY_DUST: dust1 = plt.imread(DUST1_PATH)[0:SHAPE[0], 0:SHAPE[1], 0] #float normalized to (0,1) dust2 = plt.imread(DUST2_PATH)[0:SHAPE[0], 0:SHAPE[1], 0] #float normalized to (0,1) dust = ((dust1, dust2), ) * NFRAMES_DUAL video = multiply(video, dust, dtype="uint16") noise_model = (NOISE_MODEL, NOISE_MODEL) video = (tuple((adc(f, noise_model=noise_model[i], saturation=SATURATION, readout_noise=READOUT_NOISE, bit_depth=BIT_DEPTH) for i, f in enumerate(frames))) for frames in video) #video = load(video, NFRAMES_DUAL) if __name__ == "__main__": #: no need to load video, but this way we load video into memory, and we #: can scroll back and forth with the viewer. Uncomment the line below if SAVEFIG: video = load(video, NFRAMES_DUAL) # loads and displays progress bar import matplotlib.pyplot as plt plt.figure(figsize=(8, 3)) plt.subplot(121)
intensity=INTENSITY, dtype="uint16") #: crop video to selected region of interest video = crop(video, roi=((0, SHAPE[0]), (0, SHAPE[1]))) #: apply dust particles if APPLY_DUST: dust = plt.imread(DUST1_PATH)[0:SHAPE[0], 0:SHAPE[1], 0] #float normalized to (0,1) dust = ((dust, ), ) * NFRAMES_FULL video = multiply(video, dust) video = (tuple((adc(f, noise_model=NOISE_MODEL, saturation=SATURATION, readout_noise=READOUT_NOISE, bit_depth=BIT_DEPTH) for f in frames)) for frames in video) if __name__ == "__main__": #: no need to load video, but this way we load video into memory, and we #: can scroll back and forth with the viewer. Uncomment the line below. #video = load(video, NFRAMES) # loads and displays progress bar #: VideoViewer either expects a multi_frame iterator, or a numpy array viewer = VideoViewer(video, count=NFRAMES_FULL, vmin=0, cmap="gray", vmax=VMAX) viewer.show()