#: perform rfft2 and crop results, to take only first kimax and first kjmax wavenumbers. fft = rfft2(video, kimax=KIMAX, kjmax=KJMAX) #: you can also normalize each frame with respect to the [0,0] component of the fft #: this it therefore equivalent to normalize_video #fft = normalize_fft(fft) if __name__ == "__main__": import os.path as p #: now perform auto correlation calculation with default parameters using iterative algorithm data, bg, var = iacorr_multi(fft, count=NFRAMES) #: inspect the data viewer = MultitauViewer(scale=True) viewer.set_data(data, bg, var) viewer.set_mask(k=25, angle=0, sector=30) viewer.plot() viewer.show() #perform normalization and merge data fast, slow = normalize_multi(data, bg, var, scale=True) #: save the normalized raw data to numpy files np.save(p.join(DATA_PATH, "auto_correlate_multi_raw_fast.npy"), fast) np.save(p.join(DATA_PATH, "auto_correlate_multi_raw_slow.npy"), slow) x, y = log_merge(fast, slow) #: save the normalized merged data to numpy files
#:perform the actual multiplication video = multiply(video, window_video) #: if the intesity of light source flickers you can normalize each frame to the intensity of the frame #video = normalize_video(video) #: perform rfft2 and crop results, to take only first kimax and first kjmax wavenumbers. fft = rfft2(video, kimax = KIMAX, kjmax = KJMAX) #: you can also normalize each frame with respect to the [0,0] component of the fft #: this it therefore equivalent to normalize_video #fft = normalize_fft(fft) fft = play_threaded(fft) if __name__ == "__main__": import os.path as p #we will show live calculation with the viewer viewer = MultitauViewer(scale = True) #initial mask parameters viewer.k = 15 viewer.sector = 30 #: now perform auto correlation calculation with default parameters and show live data, bg, var = iccorr_multi(fft, t1, t2, period = PERIOD, viewer = viewer) viewer.show()