コード例 #1
0
def eval1():
  n_observations = 2000  # number of data points
  n_features = 1  # number of features

  X_train, X_test, y_train, y_test = build_econ1_dataset(n_observations)
  print("Size of features in training data: {}".format(X_train.shape))
  print("Size of output in training data: {}".format(y_train.shape))
  print("Size of features in test data: {}".format(X_test.shape))
  print("Size of output in test data: {}".format(y_test.shape))

  fig, ax = plt.subplots()
  fig.set_size_inches(10, 8)
  sns.regplot(X_train, y_train, fit_reg=False)
  # plt.savefig('toydata.png')
  # plt.show()
  # plot.figure.size = 100
  # plt.show()

  kmn = KernelMixtureNetwork(train_scales=True, n_centers=20)
  kmn.fit(X_train, y_train, n_epoch=300, eval_set=(X_test, y_test))
  kmn.plot_loss()
  # plt.savefig('trainplot.png')
  samples = kmn.sample(X_test)
  print(X_test.shape, samples.shape)
  jp = sns.jointplot(X_test.ravel(), samples, kind="hex", stat_func=None, size=10)
  jp.ax_joint.add_line(Line2D([X_test[0][0], X_test[0][0]], [-40, 40], linewidth=3))
  jp.ax_joint.add_line(Line2D([X_test[1][0], X_test[1][0]], [-40, 40], color='g', linewidth=3))
  jp.ax_joint.add_line(Line2D([X_test[2][0], X_test[2][0]], [-40, 40], color='r', linewidth=3))
  plt.savefig('hexplot.png')
  plt.show()
  d = kmn.predict_density(X_test[0:3, :].reshape(-1, 1), resolution=1000)
  df = pd.DataFrame(d).transpose()
  df.index = np.linspace(kmn.y_min, kmn.y_max, num=1000)
  df.plot(legend=False, linewidth=3, figsize=(12.2, 8))
  plt.savefig('conditional_density.png')
    def test_KMN_with_2d_gaussian_sampling(self):
        np.random.seed(22)
        X, Y = self.get_samples(mu=5)

        import time
        t = time.time()
        model = KernelMixtureNetwork("kmn_sampling",
                                     1,
                                     1,
                                     center_sampling_method='k_means',
                                     n_centers=5,
                                     n_training_epochs=1000,
                                     data_normalization=True)
        print("time to build model:", time.time() - t)
        t = time.time()

        model.fit(X, Y)
        print("time to fit model:", time.time() - t)

        x_cond = 5 * np.ones(shape=(2000000, 1))
        _, y_sample = model.sample(x_cond)
        print(np.mean(y_sample), np.std(y_sample))
        self.assertAlmostEqual(np.mean(y_sample),
                               float(model.mean_(x_cond[1])),
                               places=1)
        self.assertAlmostEqual(np.std(y_sample),
                               float(model.covariance(x_cond[1])),
                               places=1)

        x_cond = np.ones(shape=(400000, 1))
        x_cond[0, 0] = 5.0
        _, y_sample = model.sample(x_cond)
        self.assertAlmostEqual(np.mean(y_sample),
                               float(model.mean_(x_cond[1])),
                               places=1)
        self.assertAlmostEqual(np.std(y_sample),
                               float(np.sqrt(model.covariance(x_cond[1]))),
                               places=1)