コード例 #1
0
 def test_bigClam(self):
     g = nx.karate_club_graph()
     coms = algorithms.big_clam(g)
     self.assertEqual(type(coms.communities), list)
     if len(coms.communities) > 0:
         self.assertEqual(type(coms.communities[0]), list)
         self.assertEqual(type(coms.communities[0][0]), int)
コード例 #2
0
 def test_bigClam(self):
     g = get_string_graph()
     coms = algorithms.big_clam(g)
     self.assertEqual(type(coms.communities), list)
     if len(coms.communities) > 0:
         self.assertEqual(type(coms.communities[0]), list)
         if len(coms.communities[0]) > 0:
             self.assertEqual(type(coms.communities[0][0]), str)
コード例 #3
0
 elif (options.method == 'significance_communities'):
     communities = algorithms.significance_communities(g, **clust_kwargs)
 elif (options.method == 'spinglass'):
     communities = algorithms.spinglass(g, **clust_kwargs)
 elif (options.method == 'surprise_communities'):
     communities = algorithms.surprise_communities(g, **clust_kwargs)
 elif (options.method == 'walktrap'):
     communities = algorithms.walktrap(g, **clust_kwargs)
 #elif(options.method == 'sbm_dl'):
 #	communities = algorithms.sbm_dl(g)
 #elif(options.method == 'sbm_dl_nested'):
 #	communities = algorithms.sbm_dl_nested(g)
 elif (options.method == 'lais2'):
     communities = algorithms.lais2(g, **clust_kwargs)
 elif (options.method == 'big_clam'):
     communities = algorithms.big_clam(g, **clust_kwargs)
 elif (options.method == 'danmf'):
     communities = algorithms.danmf(g, **clust_kwargs)
 elif (options.method == 'ego_networks'):
     communities = algorithms.ego_networks(g, **clust_kwargs)
 elif (options.method == 'egonet_splitter'):
     communities = algorithms.egonet_splitter(g, **clust_kwargs)
 elif (options.method == 'nmnf'):
     communities = algorithms.nmnf(g, **clust_kwargs)
 elif (options.method == 'nnsed'):
     communities = algorithms.nnsed(g, **clust_kwargs)
 elif (options.method == 'slpa'):
     communities = algorithms.slpa(g, **clust_kwargs)
 elif (options.method == 'bimlpa'):
     communities = actlgorithms.bimlpa(g, **clust_kwargs)
 elif (options.method == 'wcommunity'):